Entergy Corporation - Water Security 2021

W0. Introduction

W0.1

(W0.1) Give a general description of and introduction to your organization.

Entergy Corporation (NYSE: ETR) is an integrated energy company engaged in electric power production, transmission, and retail distribution operations. Entergy delivers electricity to 3 million utility customers in Arkansas, Louisiana, Mississippi, and Texas. Entergy owns and operates one of the cleanest large-scale U.S. power generating fleets with approximately 30,000 megawatts of electric generating capacity, including 7,000 megawatts of nuclear power. Headquartered in New Orleans, Louisiana, Entergy has annual revenues of $10 billion and more than 13,000 employees.

Led by our board of directors, Entergy maintains a forward-looking environmental management policy that extends beyond a dedication to environmental compliance. Our policy commits us, among other things, to practice sustainability in all that we do, not only through our environmentally responsible behavior, but also through our support of initiatives that promote local, industry, and global prosperity.

Entergy has a strong track record related to water compliance, efficiency, recycling, and optimization. The company has identified Clean Water and Sanitation as one of the United Nations Sustainable Development Goals (SDG) that we can influence. This SDG (#6) focuses on addressing water availability while also managing flood risk, minimizing our water use, and ensuring our compliance with federal, state, and local regulators.

Water is essential to life but can be a risk during extreme weather events. Entergy addresses water availability while also managing flood issues. We look for opportunities to reduce water use in our operations while evaluating water availability and ensuring compliance with federal, state, and local permits and requirements. Fleet modernization minimizes our impact on water as newer plants withdraw significantly less water than our legacy units. We also evaluate water
risks from flooding as sea-level rises, coastal erosion, and subsidence in our coastal service area impact our region.

Public reporting of environmental, social, and governance metrics has become increasingly important to our stakeholders. Entergy collects environmental, social and governance (ESG) metrics and supporting narratives and discloses them annually in its Integrated Report, Performance Data Table, the Entergy Statistical Report and Investor Guide, the EEI ESG and American Gas Association templates, and Global Reporting Initiative and Sustainability Accounting Standards Board mapping. These disclosures contain several water-related metrics. These documents are available here -

https://www.entergy.com/sustainability/disclosures/

https://www.entergy.com/investor_relations/annual_publications/

Additionally, for 19 consecutive years, the Dow Jones Sustainability Index (DJSI) has included Entergy on either its World or North America index or both. In 2020, we earned perfect scores in climate strategy, water-related risks, materiality, environmental reporting, social reporting, and policy influence.

Forward-Looking Information: Entergy’s statements concerning its environmental plans, goals, beliefs, and expectations, including statements regarding its greenhouse gas reduction goals, strategies and actions it may take to achieve such goals, statements regarding potential technological advances, and other statements of Entergy’s plans, beliefs, or expectations included in this presentation are “forward-looking statements” which apply only as of the dates indicated. Forward-looking statements are subject to a number of risks, uncertainties, and other factors that could cause actual results to differ materially from those expressed or implied in such forward-looking statements, including, among other things, uncertainties associated with regulatory proceedings and other cost recovery mechanisms, operation and relicensing of nuclear facilities, major storms and other catastrophic events, risks associated with executing on our business strategies, effects of changes in laws, regulations or policies, the effects of technological change, including the costs, pace of development and commercialization of new and emerging technologies, uncertainties and other factors discussed in Entergy’s most recent Annual Report on Form 10-K and subsequent reports and filings made under the Securities Exchange Act of 1934.
(W-EU0.1a) Which activities in the electric utilities sector does your organization engage in?

- Electricity generation
- Transmission
- Distribution
- Other, please specify (1.) Gas storage, transmission and distribution 2.) Smart grids/ demand response 3.) Battery storage 4.) Micro Grids)

W-EU0.1b

(W-EU0.1b) For your electricity generation activities, provide details of your nameplate capacity and the generation for each technology.

<table>
<thead>
<tr>
<th>Technology</th>
<th>Nameplate capacity (MW)</th>
<th>% of total nameplate capacity</th>
<th>Gross electricity generation (GWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coal – hard</td>
<td>2392</td>
<td>9.11</td>
<td>4169</td>
</tr>
<tr>
<td>Lignite</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Oil</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gas</td>
<td>16703</td>
<td>63.59</td>
<td>60734</td>
</tr>
<tr>
<td>Biomass</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Waste (non-biomass)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Nuclear</td>
<td>7069</td>
<td>26.91</td>
<td>56670</td>
</tr>
<tr>
<td>Fossil-fuel plants fitted with carbon capture and storage</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Geothermal</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Hydropower</td>
<td>73</td>
<td>0.28</td>
<td>209</td>
</tr>
<tr>
<td>Wind</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Solar</td>
<td>29</td>
<td>0.11</td>
<td>6</td>
</tr>
<tr>
<td>Marine</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Other renewable</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Other non-renewable</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>26266</td>
<td>100</td>
<td>121788</td>
</tr>
</tbody>
</table>

W0.2

(W0.2) State the start and end date of the year for which you are reporting data.

<table>
<thead>
<tr>
<th>Reporting year</th>
<th>Start date</th>
<th>End date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>January 1 2020</td>
<td>December 31 2020</td>
</tr>
</tbody>
</table>
W0.3

(W0.3) Select the countries/areas for which you will be supplying data.
United States of America

W0.4

(W0.4) Select the currency used for all financial information disclosed throughout your response.
USD

W0.5

(W0.5) Select the option that best describes the reporting boundary for companies, entities, or groups for which water impacts on your business are being reported.
Companies, entities or groups over which financial control is exercised

W0.6

(W0.6) Within this boundary, are there any geographies, facilities, water aspects, or other exclusions from your disclosure?
Yes

W0.6a

(W0.6a) Please report the exclusions.

<table>
<thead>
<tr>
<th>Exclusion</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commercial office buildings</td>
<td>The quantity of water used in these office buildings is insignificant compared to the amount of water used for Entergy's power generation operations. Additionally, the water utilized at these office buildings is not supplied from sources susceptible to shortages. Entergy does not monitor water usage at its office buildings.</td>
</tr>
</tbody>
</table>
W1. Current state

W1.1

(W1.1) Rate the importance (current and future) of water quality and water quantity to the success of your business.

<table>
<thead>
<tr>
<th>Direct use importance rating</th>
<th>Indirect use importance rating</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sufficient amounts of good quality freshwater available for use</td>
<td>Vital</td>
<td>Vital</td>
</tr>
<tr>
<td>Sufficient amounts of recycled, brackish and/or produced water available for use</td>
<td>Important</td>
<td>Important</td>
</tr>
</tbody>
</table>

W1.2

(W1.2) Across all your operations, what proportion of the following water aspects are regularly measured and monitored?

<table>
<thead>
<tr>
<th>% of sites/facilities/operations</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>% of sites/facilities/operations</td>
<td>Please explain</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Water withdrawals – total volumes</td>
<td>Entergy monitors 100% of its sites for water withdrawals. The volume of water withdrawals at the power generation plants are measured either by direct metering or, in many cases, estimated daily, monthly, quarterly, or annually using water pump capacity and run time. Other company locations (service centers, office buildings, etc.) are supplied primarily by municipal water sources.</td>
</tr>
<tr>
<td>Water withdrawals – volumes by source</td>
<td>Entergy monitors 100% of its sites for water withdrawals by source. The volume of water withdrawals at the power generation plants are measured either by direct metering or, in many cases, estimated daily, monthly, quarterly, or annually using water pump capacity and run time. Other company locations (service centers, office buildings, etc.) are supplied primarily by municipal water sources.</td>
</tr>
<tr>
<td>Entrained water associated with your metals & mining sector activities - total volumes [only metals and mining sector]</td>
<td><Not Applicable></td>
</tr>
<tr>
<td>Produced water associated with your oil & gas sector activities - total volumes [only oil and gas sector]</td>
<td><Not Applicable></td>
</tr>
<tr>
<td>Water withdrawals quality</td>
<td>Entergy monitors 100% of its sites for water withdrawals. Entergy monitors its water withdrawals and monitors the quality of such water as required by permits and as needed to support plant chemistry. This data is reported or retained to the extent required by permits or regulations.</td>
</tr>
<tr>
<td>Water discharges – total volumes</td>
<td>Entergy monitors 100% of its sites for water discharges. Water discharges from the power generation plants are permitted by the appropriate regulatory agency. These permits identify the receiving water body, require an estimate of discharge flow, identify the treatment method, and require monitoring various water quality parameters. All of this information is reported to the permitting agency regularly, which depending on the permit, may be required monthly, quarterly, or annually. Across our operations, Entergy protects water resources by maintaining a compliance rate with state and federal water pollution control permit requirements of at least 99.99% from year to year. Other company locations (service centers, office buildings, etc.) are serviced primarily by municipal treatment systems.</td>
</tr>
<tr>
<td>Water discharges – volumes by destination</td>
<td>Entergy monitors 100% of its sites for water discharges. Water discharges from the power generation plants are permitted by the appropriate regulatory agency. These permits identify the receiving water body, require an estimate of discharge flow, identify the treatment method, and require monitoring various water quality parameters. All of this information is reported to the permitting agency regularly, which depending on the permit, may be required monthly, quarterly, or annually. Across our operations, Entergy protects water resources by maintaining a compliance rate with state and federal water pollution control permit requirements of at least 99.99% from year to year. Other company locations (service centers, office buildings, etc.) are serviced primarily by municipal treatment systems.</td>
</tr>
<tr>
<td></td>
<td>% of sites/facilities/operations</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>Water discharges – volumes by treatment method</td>
<td>100%</td>
</tr>
<tr>
<td>Water discharge quality – by standard effluent parameters</td>
<td>100%</td>
</tr>
<tr>
<td>Water discharge quality – temperature</td>
<td>100%</td>
</tr>
<tr>
<td>Water consumption – total volume</td>
<td>100%</td>
</tr>
<tr>
<td>Water recycled/reused</td>
<td>100%</td>
</tr>
<tr>
<td>The provision of fully-functioning, safely managed WASH services to all workers</td>
<td>100%</td>
</tr>
</tbody>
</table>
W-EU1.2a

(W-EU1.2a) For your hydropower operations, what proportion of the following water aspects are regularly measured and monitored?

<table>
<thead>
<tr>
<th>% of sites/facilities/operations measured and monitored</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fulfilment of downstream environmental flows 100%</td>
<td>Entergy's hydropower facilities monitor 100% of their downstream environmental flows in order to prove compliance with minimum flow requirements in place for fisheries and recreational purposes.</td>
</tr>
<tr>
<td>Sediment loading 100%</td>
<td>Construction management processes, such as utilizing above-grade land clearing processes in rights-of-way development, have reduced siltation and erosion arising from the construction activities and the subsequent sediment deposition in jurisdictional waters of the U.S across Entergy's operations. Entergy employs best management practices to manage and monitor runoff from permitted lake bed disturbances such as seawalls, dredges, and excavations.</td>
</tr>
<tr>
<td>Other, please specify 100%</td>
<td>Oil and grease concentrations and pH are monitored at all Entergy hydropower facilities to ensure compliance with their NPDES permitting requirements.</td>
</tr>
</tbody>
</table>

W1.2b

(W1.2b) What are the total volumes of water withdrawn, discharged, and consumed across all your operations, and how do these volumes compare to the previous reporting year?

<table>
<thead>
<tr>
<th>Volume (megaliters/year)</th>
<th>Comparison with previous reporting year</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total withdrawals 7941012.29</td>
<td>Much lower</td>
<td>During 2020, the total water withdrawn by Entergy facilities was much lower than the quantity withdrawn during 2019. Entergy facilities withdrew 11,153,415.10 gallons of water during 2019. Independence Power Plant, Indian Point Energy Center, White Bluff Power Plant, Hot Spring Energy Facility, and Nelson Power Plant reported much lower water withdrawals during 2020. Yearly changes less than 5 percent were considered "about the same." Changes between 5% and 25% were considered "higher" or "lower." Year-to-year changes greater than 25% were considered "much higher"/"much lower." Future volumes are not expected to vary greatly based on generation projections.</td>
</tr>
<tr>
<td>Volume (megaliters/year)</td>
<td>Comparison with previous reporting year</td>
<td>Please explain</td>
</tr>
<tr>
<td>-------------------------</td>
<td>--</td>
<td>----------------</td>
</tr>
<tr>
<td>Total discharges</td>
<td>7801926.78</td>
<td>Much lower</td>
</tr>
</tbody>
</table>

During 2020, the total water discharged by Entergy facilities was much lower than the quantity discharged during 2019. Entergy facilities discharged 10,978,964.76 gallons of water during 2019. Indian Point Energy Center and White Bluff Power Plant reported much lower water discharges during 2020. Yearly changes less than 5 percent were considered "about the same." Changes between 5% and 25% were considered "higher" or "lower." Year-to-year changes greater than 25% were considered "much higher"/"much lower." Future volumes are not expected to vary greatly based on generation projections.

| Total consumption | 139085.51 | Lower |

During 2020, the total water consumed by Entergy facilities was lower than the quantity consumed during 2019. Entergy facilities consumed 174,450.55 gallons of water during 2019. Grand Gulf Nuclear Station, White Bluff Power Plant, Independence Power Plant, Hot Spring Energy Facility, and Nelson Power Plant reported much lower water consumption values during 2020. Power production at these facilities decreased during 2020, resulting in less water being consumed. Changes between 5% and 25% were considered "higher" or "lower." Year-to-year changes greater than 25% were considered "much higher"/"much lower." Future volumes are not expected to vary greatly based on generation projections.

W1.2d

(W1.2d) Indicate whether water is withdrawn from areas with water stress and provide the proportion.

<table>
<thead>
<tr>
<th>Withdrawals are from areas with water stress</th>
<th>% withdrawn from areas with water stress</th>
<th>Comparison with previous reporting year</th>
<th>Identification tool</th>
<th>Please explain</th>
</tr>
</thead>
</table>

https://www.cdp.net/enformatted_responses/responses?campaign_id=74241104&discloser_id=892833&locale=enorganization_name=Entergy+… 10/115
Withdrawals are from areas with water stress	% withdrawn from areas with water stress	Comparison with previous reporting year	Identification tool	Please explain
Row 1 | Yes | 1-10 | About the same | WRI Aqueduct | No Entergy operations occur in water stressed areas as defined by RobecoSAM. However, Entergy's Lewis Creek plant is in Montgomery County, Texas, in the Lone Star Groundwater Conservation District (LSGCD), an area identified as water-stressed due to current water use exceeding the local aquifers' sustainable yield by ~20% (25 billion gallons use vs. 21 billion gallons yield). World Resource Institute's Aqueduct water risk atlas also notes that this area is categorized as medium to high risk based on physical quantity, quality, regulatory, and reputational risk categories. For these reasons, in 2014, Entergy’s Lewis Creek plant implemented conservation measures aligned with the area's water district's strategic management plan. We work closely with the LSGCD to optimize water use and will continue to utilize at least 30% less water than originally permitted. Existing Lewis Creek units use a large non-public reservoir for cooling water and heat dissipation. This system is closed-cycle except for necessary make-up due to evaporation, which is taken from surface water, not the stressed groundwater resource. Lewis Creek protects its water resources by continuing the conservation measures implemented in 2014 and by maintaining a compliance rate with state and federal discharge permit requirements of at least 99 percent from year to year. On January 1, 2021, another Entergy facility, the Montgomery County Power Station, began commercial operations in the same area as the Lewis Creek facility. However, the Montgomery County Power Station utilizes the existing Lewis Creek reservoir for cooling tower makeup water and heat dissipation; the plant does not use groundwater resources.

W1.2h

(W1.2h) Provide total water withdrawal data by source.
<table>
<thead>
<tr>
<th>Type of Water Source</th>
<th>Relevance</th>
<th>Volume (megaliters/year)</th>
<th>Comparison with previous reporting year</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fresh surface water, including rainwater, water from wetlands, rivers, and lakes</td>
<td>Relevant</td>
<td>6415831.5</td>
<td>About the same</td>
<td>The total water withdrawal from fresh surface water sources during 2020 was 6,415,831.50 megaliters/year, and the value during 2019 was 6,457,878.52 megaliters/year. Entergy facilities reliant on freshwater experienced similar operations during 2020, withdrawing approximately the same amount of water as the year prior. Entergy produces electricity from steam electric power plants that use large amounts of freshwater. Water withdrawal from this source is relevant to the company, as it directly impacts plant operations. Changes between 5% and 25% were considered "higher" or "lower." Year-to-year changes greater than 25% were considered "much higher"/"much lower." Future volumes are not expected to vary greatly based on generation projections.</td>
</tr>
<tr>
<td>Brackish surface water/Seawater</td>
<td>Relevant</td>
<td>1488698.17</td>
<td>Much lower</td>
<td>The total water withdrawal from brackish surface water sources during 2020 was 1,488,698.17 megaliters/year, and the value during 2019 was 4,646,097.77 megaliters/year. The Pilgrim Nuclear Power Station, which withdrew large quantities of brackish water, was no longer owned by Entergy during 2020, explaining the significant decrease observed. Entergy's power generation fleet utilizes brackish water for cooling, boiler make-up water, and house service water needs. Water withdrawal from this source is relevant to the company, as it directly impacts plant operations. Changes between 5% and 25% were considered "higher" or "lower." Year-to-year changes greater than 25% were considered "much higher"/"much lower." Future volumes are not expected to vary greatly based on generation projections.</td>
</tr>
<tr>
<td>Groundwater – renewable</td>
<td>Relevant</td>
<td>26775.61</td>
<td>Much lower</td>
<td>The total water withdrawal from groundwater sources during 2020 was 26,775.61 megaliters/year, and the value during 2019 was 49,438.81 megaliters/year. The Grand Gulf Generating Station, which withdrew large quantities of groundwater during 2019, reported much lower withdrawal volumes during 2020 due to lower power production. Water withdrawal from this source is relevant as it directly impacts Entergy's plant operations. Entergy produces electricity from steam electric power plants that utilize water from this source. Changes between 5% and 25% were considered "higher" or "lower." Year-to-year changes greater than 25% were considered "much higher"/"much lower." Future volumes are not expected to vary greatly based on generation projections; however, water usage is dependent on capacity factor in any given year.</td>
</tr>
<tr>
<td>Relevance</td>
<td>Volume (megaliters/year)</td>
<td>Comparison with previous reporting year</td>
<td>Please explain</td>
<td></td>
</tr>
<tr>
<td>--------------------</td>
<td>--------------------------</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Groundwater – non-renewable</td>
<td>Not relevant</td>
<td><Not Applicable></td>
<td>Entergy did not withdraw water from non-renewable groundwater sources during 2020, which was also the case for the previous year. Entergy does not expect future operations to change and for water to be withdrawn from this source.</td>
<td></td>
</tr>
<tr>
<td>Produced/Entrained water</td>
<td>Not relevant</td>
<td><Not Applicable></td>
<td>Entergy did not withdraw water from produced/entrained sources during 2020, which was also the case for the previous year. Entergy does not expect future operations to change and for water to be withdrawn from this source.</td>
<td></td>
</tr>
<tr>
<td>Third party sources</td>
<td>Relevant</td>
<td>9707.01</td>
<td>Much lower</td>
<td></td>
</tr>
</tbody>
</table>

The total water withdrawal from third party sources during 2020 was 9707.01 megaliters/year, and the value during 2019 was 20,298.37 megaliters/year. The Nelson Power Plant, which withdrew large quantities of water from this source during 2019, reported much lower withdrawal volumes during 2020 due to lower power production. Water withdrawal from this source is relevant as it directly impacts Entergy’s plant operations. Entergy produces electricity from steam electric power plants that utilize water from this source. Changes between 5% and 25% were considered “higher” or “lower.” Year-to-year changes greater than 25% were considered “much higher”/“much lower.” Future volumes are not expected to vary greatly based on generation projections.

W1.2i

(W1.2i) Provide total water discharge data by destination.

<table>
<thead>
<tr>
<th>Relevance</th>
<th>Volume (megaliters/year)</th>
<th>Comparison with previous reporting year</th>
<th>Please explain</th>
</tr>
</thead>
</table>

https://www.cdp.net/enformatted_responses/responses?campaign_id=74241104&discloser_id=892833&locale=en&organization_name=Entergy+...
<table>
<thead>
<tr>
<th>Relevance</th>
<th>Volume (megaliters/year)</th>
<th>Comparison with previous reporting year</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fresh surface water</td>
<td>Relevant</td>
<td>6321712.5</td>
<td>About the same</td>
</tr>
<tr>
<td>Brackish surface water/seawater</td>
<td>Relevant</td>
<td>1480214.28</td>
<td>Much lower</td>
</tr>
<tr>
<td>Groundwater</td>
<td>Not relevant</td>
<td><Not Applicable></td>
<td><Not Applicable></td>
</tr>
<tr>
<td>Third-party destinations</td>
<td>Not relevant</td>
<td><Not Applicable></td>
<td><Not Applicable></td>
</tr>
</tbody>
</table>

W1.2j

(W1.2j) Within your direct operations, indicate the highest level(s) to which you treat your discharge.
<table>
<thead>
<tr>
<th>Treatment Level</th>
<th>Relevance of Treatment Level to Discharge</th>
<th>Volume (megaliters/year)</th>
<th>Comparison of Treated Volume with Previous Reporting Year</th>
<th>% of Your Sites/Facilities/Operations This Volume Applies To</th>
<th>Please Explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tertiary treatment</td>
<td>Relevant</td>
<td>11921.72</td>
<td>Lower</td>
<td>21-30</td>
<td>Entergy facilities that performed tertiary treatment before discharging their water have been summed and represented as a percentage range in the previous column.</td>
</tr>
<tr>
<td>Secondary treatment</td>
<td>Relevant</td>
<td>6640.37</td>
<td>Much higher</td>
<td>21-30</td>
<td>Entergy facilities that performed secondary treatment before discharging their water have been summed and represented as a percentage range in the previous column.</td>
</tr>
<tr>
<td>Primary treatment only</td>
<td>Relevant</td>
<td>45603.55</td>
<td>Higher</td>
<td>51-60</td>
<td>Entergy facilities that performed primary treatment before discharging their water have been summed and represented as a percentage range in the previous column.</td>
</tr>
<tr>
<td>Discharge to the natural environment without treatment</td>
<td>Relevant</td>
<td>4000882.89</td>
<td>About the same</td>
<td>41-50</td>
<td>Entergy facilities that discharged to the natural environment without treatment have been summed and represented as a percentage range in the previous column.</td>
</tr>
<tr>
<td>Discharge to a third party without treatment</td>
<td>Not relevant</td>
<td><Not Applicable></td>
<td><Not Applicable></td>
<td><Not Applicable></td>
<td>Entergy facilities did not discharge water to third-party destinations without treatment during 2020, which was also the case for the previous year.</td>
</tr>
<tr>
<td>Other</td>
<td>Relevant</td>
<td>3366.59</td>
<td>Higher</td>
<td>11-20</td>
<td>Entergy facilities that utilized other treatment methods before discharging their water have been summed and represented as a percentage range in the previous column.</td>
</tr>
</tbody>
</table>

W-EU1.3

(W-EU1.3) Do you calculate water intensity for your electricity generation activities?

Yes
W-EU1.3a

(W-EU1.3a) Provide the following intensity information associated with your electricity generation activities.

<table>
<thead>
<tr>
<th>Water intensity value (m³)</th>
<th>Numerator: water aspect</th>
<th>Denominator</th>
<th>Comparison with previous reporting year</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>64.3</td>
<td>Total water withdrawals</td>
<td>MWh</td>
<td>Much lower</td>
<td>Water intensity value (m³) in 2019 was 118.63, indicating a 45.80% decrease from last year. Entergy tracks water intensity internally and works to reduce water intensity year by year. Based on future generation projections, Entergy’s water intensity is not expected to increase significantly. Entergy plans to invest over $11 billion (as of February 2021) in capital over the next three years (2021E to 2023E) in generation assets and transmission and distribution infrastructure. Initiated in 2002, Entergy’s portfolio transformation strategy incorporates cleaner, more efficient generation sources, allowing for the retirement of older, less efficient legacy units. This proposed fleet modernization is expected to drastically reduce Entergy’s water withdrawal volumes, as these newer plants would withdraw significantly less water than our legacy units.</td>
</tr>
</tbody>
</table>

W1.4

(W1.4) Do you engage with your value chain on water-related issues?

Yes, our customers or other value chain partners

W1.4c

(W1.4c) What is your organization’s rationale and strategy for prioritizing engagements with customers or other partners in its value chain?

Protecting the environment is one of many ways Entergy powers life and creates sustainable value for our stakeholders — customers, employees, communities and owners — and this has been true for many years. For 19 consecutive years the Dow Jones Sustainability Index has recognized our environmental and other sustainability actions by including Entergy on either its World or North America index or both. Since 2014 Entergy has scored a perfect 100 in the water related risks category of the DJSI each year. Additionally, Entergy takes part in engaging
and educating customers through our website by sharing our water management strategy. Entergy demonstrated its engagement with its customers in numerous ways. Entergy contributes to efforts related to water availability in the areas in which we operate. Just about ten years ago, we made improvements to our transmission system totaling about $300 million. Today, we are investing approximately $1 billion annually to improve our transmission infrastructure and reliability. In 2019 alone we completed projects at a cost of more than 1 billion dollars that included facilities designed to better withstand storms. Entergy deploys storm guys on critical distribution structures in open marsh areas along the coast. Storm guys are tensioned cables designed to add stability to our structures. Additionally, Entergy evaluates hardening strategies from a customer perspective, weighing the benefits of fewer and shorter outages against the high costs of hardening the system, which our customers ultimately must pay for.

• We propose projects and strategies we believe are valuable for our customers.

• Our regulators provide guidance on the prudence of investments, including storm hardening strategies.

• Maximizing resiliency everywhere is not cost-effective for our customers, but targeted programs that cost-effectively reduce the risks to reliability posed by extreme temperatures and major storms are good for all stakeholders.

W2. Business impacts

W2.1

(W2.1) Has your organization experienced any detrimental water-related impacts?

No

W2.2

(W2.2) In the reporting year, was your organization subject to any fines, enforcement orders, and/or other penalties for water-related regulatory violations?

No
W3. Procedures

W-EU3.1

(W-EU3.1) How does your organization identify and classify potential water pollutants associated with your business activities in the electric utilities sector that could have a detrimental impact on water ecosystems or human health?

Virtually all of Entergy's discharges to water are controlled either by state-issued, federally enforceable permits issued under the National Pollution Discharge Elimination System of the federal Clean Water Act or by similar state programs. Entergy facilities operate under approximately 40,000 specific water pollution control permit requirements. These permits have numeric water quality criteria which have been developed for specific parameters to protect aquatic life, human health and in some cases, wildlife from the deleterious effects of pollutants. Across our operations, Entergy protects water resources by maintaining a compliance rate with state and federal water pollution control permit requirements of at least 99.99% from year to year. Across Entergy's value chain, impacts related to water vary; hence policies and processes must adapt accordingly. Entergy manages operational water-related risk compliance and planning issues primarily through state and federal trade associations and our internal cross-functional Water Peer Group. The Water Peer Group is comprised of water subject matter experts from each of the business units. The group examines water supply and discharge issues that impact Entergy's operations, provides a forum for subject matter experts to discuss these issues, and provides coordination for path-forward strategies to influence these water issues and risks.

W-EU3.1a

(W-EU3.1a) Describe how your organization minimizes the adverse impacts of potential water pollutants associated with your activities in the electric utilities sector on water ecosystems or human health.

<table>
<thead>
<tr>
<th>Potential water pollutant</th>
<th>Description of water pollutant and potential impacts</th>
<th>Management procedures</th>
<th>Please explain</th>
</tr>
</thead>
</table>

Please explain...
<table>
<thead>
<tr>
<th>Potential water pollutant</th>
<th>Description of water pollutant and potential impacts</th>
<th>Management procedures</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrocarbons</td>
<td>A hydrocarbon is a compound of hydrogen and carbon. These are typically the chief components in many types of fuels and products we use every day. They can come in the form of a gas, liquid, solid, or polymers. The exposure or injection of these substances can cause significant health risks. Direct skin contact can happen, causing local skin irritation and, rarely, leading to systemic disease. However, prolonged exposure can lead to tissue breakdown and superficial, partial thickness chemical burns. Severe, full-thickness chemical burns can lead to absorption and acute toxic systemic manifestations. Ingestion and inhalation/aspiration of hydrocarbons can also occur, which may signify disease and lead to systemic toxicity and morbidity and mortality. (Curtis J, Metheny E, Sergent SR. Hydrocarbon Toxicity. [Updated 2021 Jan 17]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2021 Jan-.)</td>
<td>Compliance with effluent quality standards Measures to prevent spillage, leaching, and leakages Community/stakeholder engagement Emergency preparedness</td>
<td>Hydrocarbon content in discharged water is closely monitored as required by state-issued, federally enforceable permits issued under the National Pollution Discharge Elimination System of the federal Clean Water Act or by similar state programs. To aid with emergency response in the case of hydrocarbon leakage or spill, the Spill Prevention, Control, and Countermeasure (SPCC) Plan maintained by Entergy facilities, helps facilities prevent oil spills, as well as control a spill should one occur.</td>
</tr>
<tr>
<td>Potential water pollutant</td>
<td>Description of water pollutant and potential impacts</td>
<td>Management procedures</td>
<td>Please explain</td>
</tr>
<tr>
<td>--------------------------</td>
<td>---</td>
<td>------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Radiation</td>
<td>Radiation is a form of energy. It comes from radioactive elements, natural and man-made, whose atoms are unstable. Radiation is measured in units called millirems. A millirem is a unit used to measure radiation dose to humans. For radiation to cause any measurable biological effect in human beings, most scientists agree that the exposure must reach about 25,000 millirems – in a single, short-time exposure. Per the US EPA, exposure to very high levels of radiation can cause acute health effects such as skin burns and acute radiation syndrome (“radiation sickness”). It can also result in long-term health effects such as cancer and cardiovascular disease.</td>
<td>Compliance with effluent quality standards Measures to prevent spillage, leaching, and leakages Community/stakeholder engagement Emergency preparedness</td>
<td>Federal standards drawn up and enforced by the Nuclear Regulatory Commission (NRC) require that workers at nuclear power plants receive no more than 5,000 millirems of radiation a year, which Entergy ensures strict compliance with. Emergencies at Entergy nuclear power plants are classified in four ways: 1) A Notification of Unusual Event is the least serious of the four emergency classifications. It means there is a problem that is being handled by plant workers. Strict federal rules require that a number of problems are reported as Unusual Events even though they pose no danger to the public. They are reported to the Nuclear Regulatory Commission and to the local and state officials. 2) An Alert is an event that could affect plant safety. Even though there is still no danger to the public, local and state officials may set up emergency operation centers in case the situation at the plant gets worse. 3) A Site Area Emergency is an event that could possibly affect the public. Regulatory agencies would be notified, as required and engaged for assistance. 4) A General Emergency is the most serious of the four emergency classifications. Local, state and federal authorities would take action to protect the public. The sirens may be sounded to alert the public to listen to their radios for information and instructions. Designated radio stations and the Emergency Alert System would continue to give information and instructions. If necessary, some areas would be sheltered or evacuated. Entergy maintains strict plans and protocols to prevent any nuclear emergencies from occurring, and procedures to take immediate action in the event of the occurrence of a nuclear event.</td>
</tr>
<tr>
<td>Potential water pollutant</td>
<td>Description of water pollutant and potential impacts</td>
<td>Management procedures</td>
<td>Please explain</td>
</tr>
<tr>
<td>--------------------------</td>
<td>--</td>
<td>------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Thermal pollution</td>
<td>Thermal water pollution is the degradation of water quality due to a change in ambient water temperature. Multiple issues occur concurrently when heated water is released to an aquatic ecosystem. The most immediate change is a decrease in dissolved oxygen levels and rise in pH. Warm water cannot hold as much dissolved oxygen as cold water, and organic matter decomposes faster in warmer temperatures. The increase in decomposed aqueous nutrient concentrations causes eutrophication, most commonly realized as algae blooms, which block sunlight for underlying aquatic plants. Additionally, rapidly heated water accelerates the metabolism of cold blooded aquatic animals like fish, causing malnutrition due to insufficient food sources. Since the environment usually becomes more inhospitable to the area's aquatic fauna, many species leave while more vulnerable species may die, changing the biodiversity of both the original and invaded locations. (Brandon C, Thermal Water Pollution from Nuclear Power Plants)</td>
<td>Compliance with effluent quality standards Measuring to prevent spillage, leaching, and leakages Community/stakeholder engagement</td>
<td>Water temperature in discharged water is closely monitored as required by state-issued, federally enforceable permits under the National Pollution Discharge Elimination System of the federal Clean Water Act or by similar state programs. Occasionally surface water temperature rises to a point where a facility will need to power down. For example, in 2018, the Pilgrim Nuclear Station (since sold by Entergy) reduced power several times due to seawater approaching the 75-degree standard set by the Nuclear Regulatory Commission. In several instances, down powers to 40% were necessary. The estimated losses exceeded $8 million. In 2017, Pilgrim reduced power to 70% when water intake temperatures were too high. Additionally, in 2018, the Lake Catherine facility in Arkansas had to de-rate by approximately 50 MW for less than an hour due to increased water temperatures. Entergy monitors and responds to these situations as it would a physical interruption in the water supply. As we build our more modern facilities, water thermal intake issues are a factor in design considerations such as cooling towers, recirculation cooling ponds, and condenser sizing, each of which can mitigate this risk in appropriate circumstances. In 2019, Entergy also purchased its first air-cooled gas-fired generating unit at the Choctaw plant in Mississippi. The company continues to evaluate the operation of that unit.</td>
</tr>
<tr>
<td>Potential water pollutant</td>
<td>Description of water pollutant and potential impacts</td>
<td>Management procedures</td>
<td>Please explain</td>
</tr>
<tr>
<td>--------------------------</td>
<td>---</td>
<td>------------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Coal combustion residuals</td>
<td>Per the US EPA website, Coal combustion residuals, commonly known as coal ash, are created when coal is burned by power plants to produce electricity. Coal ash is one of the largest types of industrial waste generated in the United States. In 2012, 470 coal-fired electric utilities generated about 110 million tons of coal ash. Coal ash contains contaminants like mercury, cadmium and arsenic. Without proper management, these contaminants can pollute waterways, ground water, drinking water, and the air. If eaten, drunk or inhaled, these toxicants can cause cancer and nervous system impacts such as cognitive deficits, developmental delays and behavioral problems. They can also cause heart damage, lung disease, respiratory distress, kidney disease, reproductive problems, gastrointestinal illness, birth defects, and impaired bone growth in children.</td>
<td>Compliance with effluent quality standards Measures to prevent spillage, leaching, and leakages Community/stakeholder engagement</td>
<td>In June 2010, the EPA issued a proposed rule on coal combustion residuals (CCRs) that contained two primary regulatory options: (1) regulating CCRs destined for disposal in landfills or received (including stored) in surface impoundments as so-called “special wastes” under the hazardous waste program of Resource Conservation and Recovery Act (RCRA) Subtitle C; or (2) regulating CCRs destined for disposal in landfills or surface impoundments as non-hazardous wastes under Subtitle D of RCRA. Under both options, CCRs that are beneficially reused in certain processes would remain excluded from hazardous waste regulation. In April 2015, the EPA published the final CCR rule with the material being regulated under the second scenario presented above - as non-hazardous wastes regulated under RCRA Subtitle D. Under the EPA Rule, Entergy operates groundwater monitoring systems surrounding its coal combustion residual landfills located at White Bluff, Independence, and Nelson. Monitoring to date has detected certain listed constituents in the area but has not indicated that these constituents originated at the active landfill cells. Reporting has occurred as required, and detection monitoring will continue as the rule requires. In late-2017, Entergy determined that certain in-ground wastewater treatment system recycle ponds at its White Bluff and Independence facilities require management under the new EPA regulations. Consequently, to move away from using the recycling ponds, White Bluff and Independence each have installed a new permanent bottom ash handling system that does not fall under the CCR rule. As of November 2020, both sites were operating the new system and were no longer sending waste to the recycling ponds. Each site has commenced closure of its two recycle ponds.</td>
</tr>
</tbody>
</table>
(W3.3) Does your organization undertake a water-related risk assessment?
Yes, water-related risks are assessed

W3.3a

(W3.3a) Select the options that best describe your procedures for identifying and assessing water-related risks.

Direct operations

Coverage
Full

Risk assessment procedure
Water risks are assessed as part of an enterprise risk management framework

Frequency of assessment
More than once a year

How far into the future are risks considered?
1 to 3 years

Type of tools and methods used
Please select

Tools and methods used
Other, please specify (WRI Aqueduct)

Comment
Entergy uses an Enterprise Risk Management (ERM) program to identify, capture, and mitigate risks that would impede Supply Chain and the rest of Entergy from accomplishing its objectives. Facilitated sessions are conducted across the Company with each business leader, along with knowledgeable financial and operational personnel from each group. Since the original implementation of ERM, Internal Audit continues to monitor the functional groups with updating their risk profile. Entergy has identified water as a "Risk Factor" in its public disclosures and this risk is described in the SEC Form 10-K and is evaluated/updated on a quarterly basis. Additionally, the Water Peer Group, which includes representatives from all of Entergy's business functions, monitors water stressed areas on at least an annual basis using the WRI Aqueduct map and data or similar resources. Some suppliers are not included in this assessment if they are judged to not be material users of water. Additionally, in 2020, Entergy corporate controls for managing risks were the EMS Policy and EMS Procedure. Entergy's EMS policy establishes that business units identify and assess risks, including water supply and water quality that could impact their direct operations.

Supply chain

Coverage
Full

Risk assessment procedure
Water risks are assessed as part of an enterprise risk management framework

Frequency of assessment
More than once a year

How far into the future are risks considered?
1 to 3 years

Type of tools and methods used
Enterprise Risk Management

Tools and methods used
Other, please specify (WRI Aqueduct)

Comment
Entergy uses an Enterprise Risk Management (ERM) program to identify, capture, and mitigate risks that would impede Supply Chain and the rest of Entergy from accomplishing its objectives. Facilitated sessions are conducted across the Company with each business leader, along with knowledgeable financial and operational personnel from each group. Since the original implementation of ERM, Internal Audit continues to monitor the functional groups with updating their risk profile. Entergy has identified water as a "Risk Factor" in its public disclosures and this risk is described in the SEC Form 10-K and is evaluated/updated on a quarterly basis. Additionally, the Water Peer Group, which includes representatives from all of Entergy's business functions, monitors water stressed areas on at least an annual basis using the WRI Aqueduct map and data or similar resources. Some suppliers are not included in this assessment if they are judged to not be material users of water.

Other stages of the value chain

Coverage
None

Risk assessment procedure
<Not Applicable>

Frequency of assessment
<Not Applicable>

How far into the future are risks considered?
<Not Applicable>

Type of tools and methods used
<Not Applicable>

Tools and methods used
<Not Applicable>

Comment
W3.3b

(W3.3b) Which of the following contextual issues are considered in your organization’s water-related risk assessments?

<table>
<thead>
<tr>
<th>Contextual Issue</th>
<th>Relevance & Inclusion</th>
<th>Please Explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water availability at a basin/catchment level</td>
<td>Relevant, sometimes included</td>
<td>Reducing our water use and conserving water resources are priorities for Entergy. We look for opportunities to reduce water use in our operations while evaluating water availability and ensuring compliance with state and local permits and requirements. The method used to assess this issue was the WRI water stress definition. Entergy is supporting an EPRI project that provides watershed level water mapping for the Lower Arkansas River Basin, which includes our White Bluff and Arkansas Nuclear One plants. The model takes into account historical water body and groundwater usages for every consumer in the basin and models availability for the next 40 years. Then it runs scenarios to guide future decision making for water users in the basin. Entergy undertook a long-term strategic study of water availability for its Lewis Creek Plant. The study included analysis of the groundwater wells and water plant system. In conjunction with the LSGCD, the facility developed and executed a plan to reduce water withdrawal by 30% through process design changes. By working with the district to optimize water use and leveraging best practices, Lewis Creek was able to exceed its water conservation goal of 30 percent water withdrawal by 2016 – a level also maintained throughout 2020.</td>
</tr>
<tr>
<td>Water quality at a basin/catchment level</td>
<td>Relevant, sometimes included</td>
<td>Reducing our water use and conserving water resources are priorities for Entergy. We look for opportunities to reduce water use in our operations while evaluating water availability and ensuring compliance with state and local permits and requirements. The method used to assess this issue was WRI Aqueduct. Entergy participates in discussions with local and regional groups and interacts with local, regional, and state agencies regarding relevant river basin management plans. For example, Entergy is participating in the USBCSD and many other stakeholders on the update of the nutrient study of the Mississippi River. This study is evaluating the nutrient loading of the Mississippi River Basin as the river flows into the State of Louisiana, the additional nutrient loading as it flows through the state, and then the final nutrient levels when the river discharges into the Gulf of Mexico.</td>
</tr>
<tr>
<td>Stakeholder conflicts concerning water resources at a basin/catchment level</td>
<td>Relevant, sometimes included</td>
<td>Entergy is engaged and working with stakeholders on resolving potential future conflicts concerning water resources at a basin/catchment level. An example of engagement is Entergy’s continued sponsorship of the US BCSD water project to determine beneficial uses for process water discharges across sectors. Additionally, Entergy sponsored development of a water simulation that will allow individuals to experience the trade-offs necessary when decisions are made regarding water usage.</td>
</tr>
<tr>
<td>Implications of water on your key commodities/raw materials</td>
<td>Relevant, always included</td>
<td>The method used to assess this issue was internal company knowledge. Entergy produces electricity from steam electric power plants that use large amounts of cooling water, boiler make-up water and house service water needs. The water quantity, quality, biological diversity and ambient temperatures are all factors that are vitally important for Entergy's current and future power plant operations.</td>
</tr>
<tr>
<td>Water-related regulatory frameworks</td>
<td>Relevant, always included</td>
<td>The method used to assess this issue was WRI Aqueduct. Entergy's power plants are governed by the Clean Water Act and regulated through state or federal water discharge permits to ensure maintenance of high levels of water quality and to ensure biological diversity of the water withdrawal and discharge receiving body. These factors are affected by ambient conditions such as the quantity, quality, temperature, and environmental health of the water body. Other water-stressed areas would be managed similarly. Entergy protects water resources by maintaining a compliance rate with state and federal permit requirements of at least 99 percent from year to year with permit limits related to water discharges and aquatic ecology protection. For example, at the Lewis Creek Plant in Willis, Texas, a groundwater-constrained area, we work with the water conservation district to optimize water use, gaining best practices that can help us use water wisely throughout our operations.</td>
</tr>
<tr>
<td>Status of ecosystems and habitats</td>
<td>Relevant, always included</td>
<td>The method used to assess this issue was WRI Aqueduct. Entergy's power plants are governed by the Clean Water Act and regulated through state or federal water discharge permits to ensure maintenance of high levels of water quality and to ensure biological diversity of the water withdrawal and discharge receiving body. These factors are affected by ambient conditions such as the quantity, quality, temperature, and environmental health of the water body. Other water-stressed areas would be managed similarly. Entergy protects water resources by maintaining a compliance rate with state and federal permit requirements of at least 99 percent from year to year with permit limits related to water discharges and aquatic ecology protection. For example, at the Lewis Creek Plant in Willis, Texas, a groundwater-constrained area, we work with the water conservation district to optimize water use, gaining best practices that can help us use water wisely throughout our operations.</td>
</tr>
<tr>
<td>Access to fully-functioning, safely managed WASH services for all employees</td>
<td>Relevant, always included</td>
<td>The method used to assess this issue was internal company knowledge. All of Entergy's workers are provided with clean water for drinking, cooking and cleaning purposes, adequate facilities for excreta purposes, solid waste management and drainage, and hygiene information and education.</td>
</tr>
<tr>
<td>Other contextual issues, please specify</td>
<td>Not considered</td>
<td>Not applicable.</td>
</tr>
</tbody>
</table>

W3.3c

(W3.3c) Which of the following stakeholders are considered in your organization's water-related risk assessments?

<table>
<thead>
<tr>
<th>Relevance & inclusion</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Relevance & inclusion</td>
<td>Please explain</td>
</tr>
<tr>
<td>----------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Customers</td>
<td>Entergy has customers that live in coastal communities. Entergy is engaged with others in encouraging meaningful action to stem the loss of coastal wetlands and barrier island systems recognizing the value these estuaries have on ensuring continued ecosystem services, biological diversity and protection of coastal communities from climate change impacts. This restoration depends upon anticipating and successfully factoring in relative sea level rise over time. Entergy's assessments work primarily with those individuals and customer groups that represent our primary stakeholders' views and offer the experience necessary for valued input. Projects such as The Lowlander Center report and the AWF forums have been funded in part by grants provided through Entergy’s Environmental Initiatives Fund. Since 2001, the Fund has funded over $39 million for environmentally beneficial projects including those that limit carbon emissions, sequester carbon and restore coastal wetlands and upland habitat.</td>
</tr>
<tr>
<td>Employees</td>
<td>Entergy employees are the foundation for managing water risks. The Water Peer Group is comprised of water subject matter experts from across the company. Entergy formed the Water Peer Group in 2002, where employee subject matter experts meet to discuss water intake, scarcity, and quality issues. In 2020, the group focused on water stress mapping, water footprinting, and emerging regulatory issues. Entergy employees also participate in various industry groups that monitor both water quantity and quality issues at the national, regional, and state levels and benchmark performance.</td>
</tr>
<tr>
<td>Investors</td>
<td>Communicating to investors that Entergy is effectively managing risk is vitally important. Entergy’s Enterprise Risk Management (ERM) process and investment approval process (IAP) are comprehensive Company-wide processes used to analyze business risks. The analysis includes climate change issues and physical risks, including those related to water quantity/quality and stakeholder water utilization issues.</td>
</tr>
<tr>
<td>Local communities</td>
<td>Entergy is actively engaged with state and local planning groups working on the Baton Rouge groundwater and Lewis Creek groundwater issues, regulatory interest groups working on drought/water rights legislation in Texas, and in with water allocation interest groups for the watershed planning in White River and Arkansas River valleys in Arkansas.</td>
</tr>
<tr>
<td>NGOs</td>
<td>Entergy is working with the state of Louisiana, NGO’s and businesses on the Louisiana Freshwater Assessment Project to build a baseline assessment of freshwater resources in our service territory so that we make informed as we make important decisions regarding freshwater water in the future.</td>
</tr>
<tr>
<td>Other water users at a basin/catchment level</td>
<td>Entergy is working with local business leaders and the US BCSD to achieve tangible water conservation and quality improvements and establish a long-term water collaboration plan in the region by harnessing collective industry capabilities and interests. Business leaders from multiple industries work together to identify challenges related to water quality, quantity, and storm water; identify practical solutions; and work together to implement those solutions.</td>
</tr>
<tr>
<td>Regulators</td>
<td>We engage our regulators at the state and local levels to minimize potential risks from regulatory changes. In Louisiana, we engage with the Capital Area Groundwater Conservation Commission, which provides regulation of groundwater withdrawals associated with the local aquifer system. Entergy also sits on the development team for the creation of the Louisiana Water Code, which is expected to be the future management tool for groundwater, surface water, and its uses based on riparian rights.</td>
</tr>
<tr>
<td>River basin management authorities</td>
<td>River basin management authorities are key stakeholders in the evaluation of water risk within their jurisdiction and are consulted as appropriate. Entergy also participates in the Louisiana Water Synergy Project (“WSP”). The WSP started in 2012 and brings together industry, non-profits and government agencies to work on water issues important to the state. Projects include a water simulation module, development of a nutrient trading program for the state and coastal zone resiliency. The simulation model evaluates stakeholder water conflicts using a watershed scenario analysis. A computer-based simulation model also has been constructed regarding water usage in the Mississippi River basin.</td>
</tr>
<tr>
<td>Relevance & inclusion</td>
<td>Please explain</td>
</tr>
<tr>
<td>----------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Statutory special interest groups at a local level</td>
<td>Entergy participates in the Louisiana Water Synergy Project, a collaborative effort led by the U.S. Business Council for Sustainable Development. The WSP started in 2012 and brings together industry, non-profits, and government agencies to work on water issues important to the state. Projects include a water simulation module, development of a nutrient trading program for the state and coastal zone resiliency. The simulation model evaluates stakeholder water conflicts using a watershed scenario analysis. A computer-based simulation model also has been constructed regarding water usage in the Mississippi River basin. The project employs a front-end user interface to allow participants to make decisions that feed into an overall predictive model, which together form a prototype participatory simulation for the Louisiana Gulf Coast.</td>
</tr>
<tr>
<td>Suppliers</td>
<td>Entergy is a founding member of EUISSCA, formed to promote environmental stewardship among utility suppliers and to provide value to customers and shareholders. Its goal is to work with industry suppliers to improve environmental performance and advance sustainable business practices. By working as a group, member companies expect to more effectively and efficiently engage suppliers to improve impacts on air emissions, water consumption, waste disposal and energy-efficiency.</td>
</tr>
<tr>
<td>Water utilities at a local level</td>
<td>Entergy works with the Lone Star Water Conservation District, a local agency affiliated with Entergy’s Lewis Creek Plant, to track and monitor water availability at the local level surrounding our only plant in a water-stressed area (in this case, groundwater).</td>
</tr>
<tr>
<td>Other stakeholder, please specify</td>
<td>Entergy does not have ‘other’ water stakeholders that are not already included in the stakeholder list.</td>
</tr>
</tbody>
</table>

W3.3d

(W3.3d) Describe your organization’s process for identifying, assessing, and responding to water-related risks within your direct operations and other stages of your value chain.

Entergy has a strong risk management culture and has systems in place to track regulatory changes at the national, regional, state, and local levels. The regulatory tracking includes potential regulatory changes to water use, restrictions, withdrawal rights, discharge standards, or water pricing/tariffs. These systems reside in various groups within the company, including federal regulatory affairs, state regulatory affairs groups, corporate environmental, business function environmental support groups, and facility management. This tracking is important to identify regulatory risks, potential cost increases, and potential operational impacts. Information from this tracking is used to perform scenario planning, cost projections and to predict operational changes in the future. Scenario and impact analysis is conducted for regulatory changes as needed, and this analysis is presented to environmental and regulatory leadership for information and strategy development. Estimates of potential regulatory changes occur by participating in regulatory efforts as an industry stakeholder and serving on several local allocation planning groups as appropriate. Entergy has integrated regulatory changes on water use issues into its corporate-wide risk management process for regulatory issues. Entergy engages with stakeholders on regulatory issues that affect its business performance. For example, in 2020 Entergy continued to work extensively with the Edison Electric Institute,
the Cross Cutting Issues Group, and the MJB&A Permitting and Infrastructure Coalition to provide input to EPA on cooling water intake structure regulations, effluent limitations guidelines, and the expansion of federal Clean Water Act jurisdiction. Entergy noted increased regulatory scrutiny of compliance with CWA Sections 402 and 404 and increasingly restrictive supporting regulations could result in increases in costs of compliance. It should further be noted that project construction permitting can be threatened by the availability of impact mitigation credits to comply with the "no net loss" of wetlands mandate. In 2018, in the Gulf coastal areas, we had continued to experience an increasingly constrained market for hydrologic unit-specific mitigation credits and have considered other alternatives such as permittee responsible mitigation.

W4. Risks and opportunities

W4.1

(W4.1) Have you identified any inherent water-related risks with the potential to have a substantive financial or strategic impact on your business?
Yes, both in direct operations and the rest of our value chain

W4.1a

(W4.1a) How does your organization define substantive financial or strategic impact on your business?

Entergy views substantive financial impact as any water risk issue that can rise to the materiality level requiring SEC disclosure. The measure(s) used in the definition of substantive impact is a) any water risk issue potentially resulting in a compliance violation, permit exceedance, or breach of an agreement, or b) any physical water risk that could interrupt the operation of power plants. The threshold used is a change in the metric/measure/indicator, which indicates the substantive impact on direct operations, supply chain, or both. Thresholds vary by indicator. For example, any single permit exceedance would likely not meet the threshold for that indicator; however, taken in aggregate, they may or may not represent a substantive or financial impact. The frequency and process for review: The metrics and thresholds above are reviewed or updated and reported quarterly, first through the Water Peer Group and subject matter experts, then again reviewed during the Enterprise Risk Management Process (ERM).
W4.1b

(W4.1b) What is the total number of facilities exposed to water risks with the potential to have a substantive financial or strategic impact on your business, and what proportion of your company-wide facilities does this represent?

<table>
<thead>
<tr>
<th>Total number of facilities exposed to water risk</th>
<th>% company-wide facilities this represents</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row 1</td>
<td>24</td>
<td>51-75</td>
</tr>
<tr>
<td>Includes the following Facilities - White Bluff, Independence, Hot Spring, Union Power, Lake Catherine, Ouachita, Nelson, Waterford 1 & 2, Lake Charles, Wayne Leonard (SCPS), Little Gypsy, Nine Mile Point, Perryville, Baxter Wilson, Gerald Andrus, Attala, Lewis Creek, Sabine, Arkansas Nuclear One, Grand Gulf, Indian Point, Palisades, River Bend, and Waterford 3.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

W4.1c

(W4.1c) By river basin, what is the number and proportion of facilities exposed to water risks that could have a substantive financial or strategic impact on your business, and what is the potential business impact associated with those facilities?

<table>
<thead>
<tr>
<th>Country/Area & River basin</th>
<th>Number of facilities exposed to water risk</th>
<th>% company-wide facilities this represents</th>
<th>Production value for the metals & mining activities associated with these facilities</th>
<th>% company's annual electricity generation that could be affected by these facilities</th>
<th>% company's global oil & gas production volume that could be affected by these facilities</th>
<th>% company's total global revenue that could be affected</th>
</tr>
</thead>
<tbody>
<tr>
<td>United States of America</td>
<td>10</td>
<td>1-25</td>
<td><Not Applicable></td>
<td>1-25</td>
<td><Not Applicable></td>
<td>Less than 1%</td>
</tr>
</tbody>
</table>
Comment
Includes 1.) Waterford 1 & 2 2.) Wayne Leonard (SCPS) 3.) Little Gypsy 4.) Ninemile Point 5.) Baxter Wilson 6.) Grand Gulf 7.) River Bend and 8.) Waterford 3 9.) Gerald Andrus Entergy’s regulated electric utility business derives revenue from electric generation, transmission, and distribution, subject to state and local rate regulation. Should one of Entergy’s generation facilities encounter a water shortage or quality issue, any power reduction would be supplemented or replaced by other available power sources. Entergy has a duty to serve the load requirements of our customers, so there would be no revenue impact.

Country/Area & River basin
United States of America
Other, please specify (Arkansas River)

Number of facilities exposed to water risk
2

% company-wide facilities this represents
1-25

Production value for the metals & mining activities associated with these facilities
<Not Applicable>

% company’s annual electricity generation that could be affected by these facilities
1-25

% company’s global oil & gas production volume that could be affected by these facilities
<Not Applicable>

% company’s total global revenue that could be affected
Less than 1%

Comment
Includes 1.) Arkansas Nuclear One and 2.) White Bluff Entergy’s regulated electric utility business derives revenue from electric generation, transmission, and distribution, subject to state and local rate regulation. Should one of Entergy’s generation facilities encounter a water shortage or quality issue, any power reduction would be supplemented or replaced by other available power sources. Entergy has a duty to serve the load requirements of our customers, so there would be no revenue impact.

Country/Area & River basin
United States of America
Other, please specify (Ouachita River)

Number of facilities exposed to water risk
5

% company-wide facilities this represents
1-25

Production value for the metals & mining activities associated with these facilities
% company's annual electricity generation that could be affected by these facilities
1-25

% company's global oil & gas production volume that could be affected by these facilities
<Not Applicable>

% company's total global revenue that could be affected
Less than 1%

Comment
Includes 1.) Hot Spring 2.) Ouachita 3.) Union Power 4.) Perryville and 5.) Lake Catherine
Entergy's regulated electric utility business derives revenue from electric generation, trans-
mission, and distribution, subject to state and local rate regulation. Should one of Entergy's
generation facilities encounter a water shortage or quality issue, any power reduction would
be supplemented or replaced by other available power sources. Entergy has a duty to serve
the load requirements of our customers, so there would be no revenue impact.

Country/Area & River basin
| United States of America | Hudson River |

Number of facilities exposed to water risk
1

% company-wide facilities this represents
1-25

Production value for the metals & mining activities associated with these facilities
<Not Applicable>

% company's annual electricity generation that could be affected by these facilities
1-25

% company's global oil & gas production volume that could be affected by these facilities
<Not Applicable>

% company's total global revenue that could be affected
Less than 1%

Comment
Includes 1.) Indian Point During the first half of 2021, this facility was closed and sold to an-
other party.

Country/Area & River basin
| United States of America | Other, please specify (San Jacinto River (Lewis Creek Reservoir)) |

Number of facilities exposed to water risk
1
% company-wide facilities this represents
1-25

Production value for the metals & mining activities associated with these facilities
<Not Applicable>

% company’s annual electricity generation that could be affected by these facilities
1-25

% company’s global oil & gas production volume that could be affected by these facilities
<Not Applicable>

% company’s total global revenue that could be affected
Less than 1%

Comment
Includes 1.) Lewis Creek Entergy’s regulated electric utility business derives revenue from
electric generation, transmission, and distribution, subject to state and local rate regulation.
Should one of Entergy’s generation facilities encounter a water shortage or quality issue, any
power reduction would be supplemented or replaced by other available power sources.
Entergy has a duty to serve the load requirements of our customers, so there would be no
revenue impact.

Country/Area & River basin

| United States of America | Other, please specify (White River) |

Number of facilities exposed to water risk
1

% company-wide facilities this represents
1-25

Production value for the metals & mining activities associated with these facilities
<Not Applicable>

% company’s annual electricity generation that could be affected by these facilities
1-25

% company’s global oil & gas production volume that could be affected by these facilities
<Not Applicable>

% company’s total global revenue that could be affected
Less than 1%

Comment
Includes 1.) Independence Entergy’s regulated electric utility business derives revenue from
electric generation, transmission, and distribution, subject to state and local rate regulation.
Should one of Entergy’s generation facilities encounter a water shortage or quality issue, any
power reduction would be supplemented or replaced by other available power sources.
Entergy has a duty to serve the load requirements of our customers, so there would be no revenue impact.

Country/Area & River basin

| United States of America | Sabine River |

Number of facilities exposed to water risk

3

% company-wide facilities this represents

1-25

Production value for the metals & mining activities associated with these facilities

<Not Applicable>

% company's annual electricity generation that could be affected by these facilities

1-25

% company's global oil & gas production volume that could be affected by these facilities

<Not Applicable>

% company's total global revenue that could be affected

Less than 1%

Comment

Includes 1.) Nelson 2.) Sabine and 3.) Lake Charles Entergy's regulated electric utility business derives revenue from electric generation, transmission, and distribution, subject to state and local rate regulation. Should one of Entergy’s generation facilities encounter a water shortage or quality issue, any power reduction would be supplemented or replaced by other available power sources. Entergy has a duty to serve the load requirements of our customers, so there would be no revenue impact.

Country/Area & River basin

| United States of America | Other, please specify (Big Black River) |

Number of facilities exposed to water risk

1

% company-wide facilities this represents

1-25

Production value for the metals & mining activities associated with these facilities

<Not Applicable>

% company's annual electricity generation that could be affected by these facilities

1-25

% company's global oil & gas production volume that could be affected by these facilities

<Not Applicable>
% company's total global revenue that could be affected
Less than 1%

Comment
Includes 1.) Attala Entergy's regulated electric utility business derives revenue from electric generation, transmission, and distribution, subject to state and local rate regulation. Should one of Entergy's generation facilities encounter a water shortage or quality issue, any power reduction would be supplemented or replaced by other available power sources. Entergy has a duty to serve the load requirements of our customers, so there would be no revenue impact.

Country/Area & River basin
United States of America St. Lawrence

Number of facilities exposed to water risk
1

% company-wide facilities this represents
1-25

Production value for the metals & mining activities associated with these facilities
<Not Applicable>

% company's annual electricity generation that could be affected by these facilities
1-25

% company's global oil & gas production volume that could be affected by these facilities
<Not Applicable>

% company's total global revenue that could be affected
1-10

Comment
Includes 1.) Palisades Entergy's Palisades plant sells power under an established power purchase agreement and is slated to cease operations in 2022, and Entergy intends to sell the plant to a third-party.

W4.2

(W4.2) Provide details of identified risks in your direct operations with the potential to have a substantive financial or strategic impact on your business, and your response to those risks.

Country/Area & River basin
United States of America Mississippi River

Type of risk & Primary risk driver
Lack of transparency of water rights

Primary potential impact
Fines, penalties or enforcement orders

Company-specific description
Virtually all of Entergy’s discharges to water are controlled either by state-issued, federally enforceable permits issued under the National Pollution Discharge Elimination System of the federal Clean Water Act or by similar state programs. In addition, Entergy facilities operate under approximately 40,000 specific water pollution control permit requirements. If a permit requirement is in exceedance, depending on the severity of the violation, monetary fines and fees can be imposed on the power plants.

Timeframe
Current up to one year

Magnitude of potential impact
Low

Likelihood
Unlikely

Are you able to provide a potential financial impact figure?
Yes, an estimated range

Potential financial impact figure (currency)
<Not Applicable>

Potential financial impact figure - minimum (currency)
1000

Potential financial impact figure - maximum (currency)
10000

Explanation of financial impact
Depending on the exceedance of the permit requirement, the fine issued to the power plant may vary based on the duration and severity of the violation. Incurring a penalty or fine for permit noncompliance would be rare for Entergy, as across our operations, Entergy has maintained a compliance rate with state and federal water pollution control permit requirements of at least 99.99% from year to year.

Primary response to risk
Other, please specify (Internal Procedures and Policy)

Description of response
Entergy maintains a robust environmental compliance program, and water stewardship is an integral part of the company's environmental policies. Compliance with all state-issued, federally enforceable permits are tracked internally, and Entergy also makes this information publicly available.
https://www.entergy.com/userfiles/content/sustainability/performance_data_table.pdf
These practices and a strong commitment to environmental compliance have led Entergy to maintain a compliance rate with state and federal water pollution control permit requirements of at least 99.99% from year to year.

Cost of response

500000

Explanation of cost of response
The cost of response is associated with a third-party compliance EHS auditing program. Water permit compliance is one of many regulatory obligations examined during these audits.

Country/Area & River basin

United States of America Mississippi River

Type of risk & Primary risk driver

Physical Flooding

Primary potential impact

Reduction or disruption in production capacity

Company-specific description

River flooding which curtails operations at the power plants.

Timeframe

Unknown

Magnitude of potential impact

Low

Likelihood

Likely

Are you able to provide a potential financial impact figure?

No, we do not have this figure

Potential financial impact figure (currency)

<Not Applicable>

Potential financial impact figure - minimum (currency)

<Not Applicable>

Potential financial impact figure - maximum (currency)

<Not Applicable>

Explanation of financial impact

Primary response to risk

Other, please specify (Shift energy production)
Description of response
Shift energy production to other reserve units until river levels subside.

Cost of response

Explanation of cost of response
Financial investment will depend on the specific project, unable to estimate at this time. Implementation costs vary considerably based on level of process change option selected.

Country/Area & River basin
United States of America Mississippi River

Type of risk & Primary risk driver
Regulatory Regulatory uncertainty

Primary potential impact
Other, please specify (Delays in permitting)

Company-specific description
Entergy’s ability to operate is contingent upon the receipt of relevant regulatory permits and permissions. This ability may be compromised if the relevant regulatory agencies do not issue needed permits.

Timeframe
Unknown

Magnitude of potential impact
Unknown

Likelihood
Likely

Are you able to provide a potential financial impact figure?
No, we do not have this figure

Potential financial impact figure (currency)
<Not Applicable>

Potential financial impact figure - minimum (currency)
<Not Applicable>

Potential financial impact figure - maximum (currency)
<Not Applicable>

Explanation of financial impact

Primary response to risk
Engage with regulators/policymakers

Description of response
Entergy keeps abreast of the applicable federal, state and local regulatory changes that may affect its operating facilities. Entergy interacts with regulators/policymakers for additional guidance when required.

Cost of response

Explanation of cost of response
Financial investment will depend on the specific project, unable to estimate at this time. Implementation costs vary considerably based on level of process change option selected.

<table>
<thead>
<tr>
<th>Country/Area & River basin</th>
<th>United States of America</th>
<th>Mississippi River</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Type of risk & Primary risk driver</th>
<th>Reputation & markets</th>
<th>Community opposition</th>
</tr>
</thead>
</table>

Primary potential impact
Other, please specify (Requirement for remediation)

Company-specific description
Entergy’s ability to operate is contingent upon the receipt of relevant regulatory permits and permissions. This ability may be compromised if the relevant regulatory agencies and stakeholders do not have confidence in the company's ability to comply with environmental requirements.

Timeframe
1-3 years

Magnitude of potential impact
High

Likelihood
Likely

Are you able to provide a potential financial impact figure?
No, we do not have this figure

Potential financial impact figure (currency)
<Not Applicable>

Potential financial impact figure - minimum (currency)
<Not Applicable>

Potential financial impact figure - maximum (currency)
<Not Applicable>

Explanation of financial impact

Primary response to risk
Comply with local regulatory requirements
Description of response
The NRC requires nuclear power plants to regularly monitor and report the presence of radioactive material in the environment. Entergy joined other nuclear utilities and the Nuclear Energy Institute in 2006 to develop a voluntary groundwater monitoring and protection program. This initiative began after detection of very low levels of radioactive material, primarily tritium, in groundwater at several plants in the United States. Tritium is a radioactive form of hydrogen that occurs naturally and is also a by-product of nuclear plant operations. In addition to tritium, other radionuclides have been found in on site ground water at nuclear plants. As part of the groundwater monitoring and protection program, Entergy has: (1) performed reviews of plant groundwater characteristics (hydrology) and historical records of past events on site that may have potentially impacted groundwater; (2) implemented fleet procedures on how to handle events that could impact groundwater; and (3) installed groundwater monitoring wells and began periodic sampling. The program also includes protocols for notifying local officials if contamination is found.

Cost of response

Explanation of cost of response
Financial investment will depend on the specific project, unable to estimate at this time. Implementation costs vary considerably based on level of process change option selected.

Country/Area & River basin
- United States of America
- Other, please specify (Ouachita River)

Type of risk & Primary risk driver
- Physical
- Flooding

Primary potential impact
Reduction or disruption in production capacity

Company-specific description
River flooding which curtails operations at the power plants.

Timeframe
Unknown

Magnitude of potential impact
Medium

Likelihood
Unlikely

Are you able to provide a potential financial impact figure?
No, we do not have this figure

Potential financial impact figure (currency)
<Not Applicable>

Potential financial impact figure - minimum (currency)
Potential financial impact figure - maximum (currency)
<Not Applicable>

Explanation of financial impact

Primary response to risk
Other, please specify (Shift energy production)

Description of response
Shift energy production to other reserve units until water levels subside.

Cost of response

Explanation of cost of response
Financial investment will depend on the specific project, unable to estimate at this time. Implementation costs vary considerably based on level of process change option selected.

Country/Area & River basin

| United States of America | Other, please specify (White River) |

Type of risk & Primary risk driver

| Physical | Flooding |

Primary potential impact
Reduction or disruption in production capacity

Company-specific description
River flooding curtailing operations at the power plant.

Timeframe
Unknown

Magnitude of potential impact
Unknown

Likelihood
Unknown

Are you able to provide a potential financial impact figure?
No, we do not have this figure

Potential financial impact figure (currency)
<Not Applicable>

Potential financial impact figure - minimum (currency)
<Not Applicable>

Potential financial impact figure - maximum (currency)
<Not Applicable>
Explanation of financial impact

Primary response to risk
Other, please specify (Shift energy production)

Description of response
Shift energy production to other reserve units until water levels subside.

Cost of response

Explanation of cost of response
Financial investment will depend on the specific project, unable to estimate at this time. Implementation costs vary considerably based on level of process change option selected.

Country/Area & River basin
United States of America Sabine River

Type of risk & Primary risk driver
Physical Flooding

Primary potential impact
Reduction or disruption in production capacity

Company-specific description
River flooding curtailing operations at the power plant.

Timeframe
Unknown

Magnitude of potential impact
Unknown

Likelihood
Unknown

Are you able to provide a potential financial impact figure?
No, we do not have this figure

Potential financial impact figure (currency)
<Not Applicable>

Potential financial impact figure - minimum (currency)
<Not Applicable>

Potential financial impact figure - maximum (currency)
<Not Applicable>

Explanation of financial impact

Primary response to risk
Other, please specify (Shift energy production)
Description of response
Shift energy production to other reserve units until water levels subside.

Cost of response

Explanation of cost of response
Financial investment will depend on the specific project, unable to estimate at this time. Implementation costs vary considerably based on level of process change option selected.

Country/Area & River basin
United States of America
Pearl River

Type of risk & Primary risk driver
Physical
Flooding

Primary potential impact
Reduction or disruption in production capacity

Company-specific description
River flooding curtailing operations at the power plant.

Timeframe
Unknown

Magnitude of potential impact
Unknown

Likelihood
Unknown

Are you able to provide a potential financial impact figure?
No, we do not have this figure

Potential financial impact figure (currency)
<Not Applicable>

Potential financial impact figure - minimum (currency)
<Not Applicable>

Potential financial impact figure - maximum (currency)
<Not Applicable>

Explanation of financial impact

Primary response to risk
Other, please specify (Shift energy production)

Description of response
Shift energy production to other reserve units until water levels subside.

Cost of response
Explanation of cost of response
Financial investment will depend on the specific project, unable to estimate at this time. Implementation costs vary considerably based on level of process change option selected.

<table>
<thead>
<tr>
<th>Country/Area & River basin</th>
</tr>
</thead>
<tbody>
<tr>
<td>United States of America</td>
</tr>
<tr>
<td>Other, please specify (Big Black River)</td>
</tr>
</tbody>
</table>

Type of risk & Primary risk driver
Physical - Flooding

Primary potential impact
Reduction or disruption in production capacity

Company-specific description
River flooding curtailing operations at the power plant.

Timeframe
Unknown

Magnitude of potential impact
Unknown

Likelihood
Unknown

Are you able to provide a potential financial impact figure?
No, we do not have this figure

Potential financial impact figure (currency)
<Not Applicable>

Potential financial impact figure - minimum (currency)
<Not Applicable>

Potential financial impact figure - maximum (currency)
<Not Applicable>

Explanation of financial impact

Primary response to risk
Other, please specify (Shift energy production)

Description of response
Shift energy production to other reserve units until water levels subside.

Cost of response

Explanation of cost of response
Financial investment will depend on the specific project, unable to estimate at this time. Implementation costs vary considerably based on level of process change option selected.
Country/Area & River basin
United States of America, St. Lawrence

Type of risk & Primary risk driver
Physical, Flooding

Primary potential impact
Reduction or disruption in production capacity

Company-specific description
River flooding which curtails operations at the power plants.

Timeframe
Unknown

Magnitude of potential impact
Unknown

Likelihood
Unknown

Are you able to provide a potential financial impact figure?
No, we do not have this figure

Potential financial impact figure (currency)
<Not Applicable>

Potential financial impact figure - minimum (currency)
<Not Applicable>

Potential financial impact figure - maximum (currency)
<Not Applicable>

Explanation of financial impact

Primary response to risk
Other, please specify (Shift energy production)

Description of response
Shift energy production to other reserve units until river levels subside.

Cost of response

Explanation of cost of response
Financial investment will depend on the specific project, unable to estimate at this time. Implementation costs vary considerably based on level of process change option selected.
Primary potential impact
Reduction or disruption in production capacity

Company-specific description
During periods of river flood stage, the electric generation from the plant may need to be reduced.

Timeframe
1-3 years

Magnitude of potential impact
Low

Likelihood
Likely

Are you able to provide a potential financial impact figure?
No, we do not have this figure

Potential financial impact figure (currency)
<Not Applicable>

Potential financial impact figure - minimum (currency)
<Not Applicable>

Potential financial impact figure - maximum (currency)
<Not Applicable>

Explanation of financial impact

Primary response to risk
Other, please specify (Water Conservation)

Description of response
Entergy undertook a long-term strategic study of water availability for its Lewis Creek Plant. The study included analysis of the groundwater wells and water plant system at Lewis Creek, and the facility developed and executed a plan to reduce water withdrawal by 30% through process design changes. By working with the district to optimize water use and leveraging best practices, Lewis Creek was able to exceed its water conservation goal of 30 percent water withdrawal by 2016 — a level also maintained throughout 2020.

Cost of response

Explanation of cost of response
Financial investment will depend on the specific project, unable to estimate at this time. Implementation costs vary considerably based on level of process change option selected.
Type of risk & Primary risk driver

Regulatory Lack of transparency of water rights

Primary potential impact
Fines, penalties or enforcement orders

Company-specific description
Virtually all of Entergy’s discharges to water are controlled either by state-issued, federally enforceable permits issued under the National Pollution Discharge Elimination System of the federal Clean Water Act or by similar state programs. In addition, Entergy facilities operate under approximately 40,000 specific water pollution control permit requirements. If a permit requirement is in exceedance, depending on the severity of the violation, monetary fines and fees can be imposed on the power plants.

Timeframe
Current up to one year

Magnitude of potential impact
Low

Likelihood
Unlikely

Are you able to provide a potential financial impact figure?
Yes, an estimated range

Potential financial impact figure (currency)
<Not Applicable>

Potential financial impact figure - minimum (currency)
1000

Potential financial impact figure - maximum (currency)
10000

Explanation of financial impact
Depending on the exceedance of the permit requirement, the fine issued to the power plant may vary based on the duration and severity of the violation. Incurring a penalty or fine for permit noncompliance would be rare for Entergy, as across our operations, Entergy has maintained a compliance rate with state and federal water pollution control permit requirements of at least 99.99% from year to year.

Primary response to risk
Other, please specify (Internal Procedures and Policy)

Description of response
Entergy maintains a robust environmental compliance program, and water stewardship is an integral part of the company’s environmental policies. Compliance with all state-issued, fed-
erally enforceable permits are tracked internally, and Entergy also makes this information publicly available.
https://www.entergy.com/userfiles/content/sustainability/performance_data_table.pdf
These practices and a strong commitment to environmental compliance have led Entergy to maintain a compliance rate with state and federal water pollution control permit requirements of at least 99.99% from year to year.

Cost of response
500000

Explanation of cost of response
The cost of response is associated with a third-party compliance EHS auditing program. Water permit compliance is one of many regulatory obligations examined during these audits.

Country/Area & River basin

United States of America Other, please specify (Ouachita River)

Type of risk & Primary risk driver

Regulatory Lack of transparency of water rights

Primary potential impact
Fines, penalties or enforcement orders

Company-specific description
Virtually all of Entergy’s discharges to water are controlled either by state-issued, federally enforceable permits issued under the National Pollution Discharge Elimination System of the federal Clean Water Act or by similar state programs. In addition, Entergy facilities operate under approximately 40,000 specific water pollution control permit requirements. If a permit requirement is in exceedance, depending on the severity of the violation, monetary fines and fees can be imposed on the power plants.

Timeframe
Current up to one year

Magnitude of potential impact
Low

Likelihood
Unlikely

Are you able to provide a potential financial impact figure?
Yes, an estimated range

Potential financial impact figure (currency)
<Not Applicable>

Potential financial impact figure - minimum (currency)
1000
Potential financial impact figure - maximum (currency)
10000

Explanation of financial impact
Depending on the exceedance of the permit requirement, the fine issued to the power plant may vary based on the duration and severity of the violation. Incurring a penalty or fine for permit noncompliance would be rare for Entergy, as across our operations, Entergy has maintained a compliance rate with state and federal water pollution control permit requirements of at least 99.99% from year to year.

Primary response to risk
Other, please specify (Internal Procedures and Policy)

Description of response
Entergy maintains a robust environmental compliance program, and water stewardship is an integral part of the company’s environmental policies. Compliance with all state-issued, federally enforceable permits is tracked internally, and Entergy also makes this information publicly available. https://www.entergy.com/userfiles/content/sustainability/performance_data_table.pdf These practices and a strong commitment to environmental compliance have led Entergy to maintain a compliance rate with state and federal water pollution control permit requirements of at least 99.99% from year to year.

Cost of response
500000

Explanation of cost of response
The cost of response is associated with a third-party compliance EHS auditing program. Water permit compliance is one of many regulatory obligations examined during these audits.

Country/Area & River basin
- United States of America
- St. Lawrence

Type of risk & Primary risk driver
- Regulatory
- Lack of transparency of water rights

Primary potential impact
Fines, penalties or enforcement orders

Company-specific description
Virtually all of Entergy’s discharges to water are controlled either by state-issued, federally enforceable permits issued under the National Pollution Discharge Elimination System of the federal Clean Water Act or by similar state programs. In addition, Entergy facilities operate under approximately 40,000 specific water pollution control permit requirements. If a permit requirement is in exceedance, depending on the severity of the violation, monetary fines and fees can be imposed on the power plants.
Timeframe
Current up to one year

Magnitude of potential impact
Low

Likelihood
Unlikely

Are you able to provide a potential financial impact figure?
Yes, an estimated range

Potential financial impact figure (currency)
<Not Applicable>

Potential financial impact figure - minimum (currency)
1000

Potential financial impact figure - maximum (currency)
10000

Explanation of financial impact
Depending on the exceedance of the permit requirement, the fine issued to the power plant may vary based on the duration and severity of the violation. Incurring a penalty or fine for permit noncompliance would be rare for Entergy, as across our operations, Entergy has maintained a compliance rate with state and federal water pollution control permit requirements of at least 99.99% from year to year.

Primary response to risk
Other, please specify (Internal Procedures and Policy)

Description of response
Entergy maintains a robust environmental compliance program, and water stewardship is an integral part of the company's environmental policies. Compliance with all state-issued, federally enforceable permits are tracked internally, and Entergy also makes this information publicly available.
https://www.entergy.com/userfiles/content/sustainability/performance_data_table.pdf
These practices and a strong commitment to environmental compliance have led Entergy to maintain a compliance rate with state and federal water pollution control permit requirements of at least 99.99% from year to year.

Cost of response
500000

Explanation of cost of response
The cost of response is associated with a third-party compliance EHS auditing program. Water permit compliance is one of many regulatory obligations examined during these audits.
Country/Area & River basin
United States of America Other, please specify (San Jacinto River (Lewis Creek Reservoir))

Type of risk & Primary risk driver
Regulatory Lack of transparency of water rights

Primary potential impact
Fines, penalties or enforcement orders

Company-specific description
Virtually all of Entergy’s discharges to water are controlled either by state-issued, federally enforceable permits issued under the National Pollution Discharge Elimination System of the federal Clean Water Act or by similar state programs. In addition, Entergy facilities operate under approximately 40,000 specific water pollution control permit requirements. If a permit requirement is in exceedance, depending on the severity of the violation, monetary fines and fees can be imposed on the power plants.

Timeframe
Current up to one year

Magnitude of potential impact
Low

Likelihood
Unlikely

Are you able to provide a potential financial impact figure?
Yes, an estimated range

Potential financial impact figure (currency)
<Not Applicable>

Potential financial impact figure - minimum (currency)
1000

Potential financial impact figure - maximum (currency)
10000

Explanation of financial impact
Depending on the exceedance of the permit requirement, the fine issued to the power plant may vary based on the duration and severity of the violation. Incurring a penalty or fine for permit noncompliance would be rare for Entergy, as across our operations, Entergy has maintained a compliance rate with state and federal water pollution control permit requirements of at least 99.99% from year to year.

Primary response to risk
Other, please specify (Internal Procedures and Policy)

Description of response
Entergy maintains a robust environmental compliance program, and water stewardship is an integral part of the company’s environmental policies. Compliance with all state-issued, federally enforceable permits are tracked internally, and Entergy also makes this information publicly available.
https://www.entergy.com/userfiles/content/sustainability/performance_data_table.pdf
These practices and a strong commitment to environmental compliance have led Entergy to maintain a compliance rate with state and federal water pollution control permit requirements of at least 99.99% from year to year.

Cost of response

500000

Explanation of cost of response
The cost of response is associated with a third-party compliance EHS auditing program. Water permit compliance is one of many regulatory obligations examined during these audits.

Country/Area & River basin

| United States of America | Other, please specify (White River) |

Type of risk & Primary risk driver

| Regulatory | Lack of transparency of water rights |

Primary potential impact

Fines, penalties or enforcement orders

Company-specific description

Virtually all of Entergy’s discharges to water are controlled either by state-issued, federally enforceable permits issued under the National Pollution Discharge Elimination System of the federal Clean Water Act or by similar state programs. In addition, Entergy facilities operate under approximately 40,000 specific water pollution control permit requirements. If a permit requirement is in exceedance, depending on the severity of the violation, monetary fines and fees can be imposed on the power plants.

Timeframe

Current up to one year

Magnitude of potential impact

Low

Likelihood

Unlikely

Are you able to provide a potential financial impact figure?

Yes, an estimated range

Potential financial impact figure (currency)

<Not Applicable>
Potential financial impact figure - minimum (currency)
1000

Potential financial impact figure - maximum (currency)
10000

Explanation of financial impact
Depending on the exceedance of the permit requirement, the fine issued to the power plant may vary based on the duration and severity of the violation. Incurring a penalty or fine for permit noncompliance would be rare for Entergy, as across our operations, Entergy has maintained a compliance rate with state and federal water pollution control permit requirements of at least 99.99% from year to year.

Primary response to risk
Other, please specify (Internal Procedures and Policy)

Description of response
Entergy maintains a robust environmental compliance program, and water stewardship is an integral part of the company's environmental policies. Compliance with all state-issued, federally enforceable permits are tracked internally, and Entergy also makes this information publicly available.
https://www.entergy.com/userfiles/content/sustainability/performance_data_table.pdf
These practices and a strong commitment to environmental compliance have led Entergy to maintain a compliance rate with state and federal water pollution control permit requirements of at least 99.99% from year to year.

Cost of response
500000

Explanation of cost of response
The cost of response is associated with a third-party compliance EHS auditing program. Water permit compliance is one of many regulatory obligations examined during these audits.

Country/Area & River basin
United States of America
Other, please specify (Big Black River)

Type of risk & Primary risk driver
Regulatory
Lack of transparency of water rights

Primary potential impact
Fines, penalties or enforcement orders

Company-specific description
Virtually all of Entergy's discharges to water are controlled either by state-issued, federally enforceable permits issued under the National Pollution Discharge Elimination System of the federal Clean Water Act or by similar state programs. In addition, Entergy facilities operate under approximately 40,000 specific water pollution control permit requirements. If a permit
requirement is in exceedance, depending on the severity of the violation, monetary fines and fees can be imposed on the power plants.

Timeframe
Current up to one year

Magnitude of potential impact
Low

Likelihood
Unlikely

Are you able to provide a potential financial impact figure?
Yes, an estimated range

Potential financial impact figure (currency)
<Not Applicable>

Potential financial impact figure - minimum (currency)
1000

Potential financial impact figure - maximum (currency)
10000

Explanation of financial impact
Depending on the exceedance of the permit requirement, the fine issued to the power plant may vary based on the duration and severity of the violation. Incurring a penalty or fine for permit noncompliance would be rare for Entergy, as across our operations, Entergy has maintained a compliance rate with state and federal water pollution control permit requirements of at least 99.99% from year to year.

Primary response to risk
Other, please specify (Internal Procedures and Policy)

Description of response
Entergy maintains a robust environmental compliance program, and water stewardship is an integral part of the company's environmental policies. Compliance with all state-issued, federally enforceable permits are tracked internally, and Entergy also makes this information publicly available.
https://www.entergy.com/userfiles/content/sustainability/performance_data_table.pdf
These practices and a strong commitment to environmental compliance have led Entergy to maintain a compliance rate with state and federal water pollution control permit requirements of at least 99.99% from year to year.

Cost of response
500000

Explanation of cost of response
The cost of response is associated with a third-party compliance EHS auditing program. Water permit compliance is one of many regulatory obligations examined during these
W4.2a

(W4.2a) Provide details of risks identified within your value chain (beyond direct operations) with the potential to have a substantive financial or strategic impact on your business, and your response to those risks.

Country/Area & River basin
- United States of America
- Other, please specify (Arkansas River)

Stage of value chain
- Supply chain

Type of risk & Primary risk driver
- Physical
- Flooding

Primary potential impact
- Reduction or disruption in production capacity

Company-specific description
Entergy's fossil generation facilities are at risk for obtaining fuel supplies during severe weather events. Examples of such occurrences are flooding in the Midwest to the extent the rail shipments of coal were curtailed and during extreme weather events when natural gas supplies were curtailed.

Timeframe
- Unknown

Magnitude of potential impact
- Medium-low

Likelihood
- Likely

Are you able to provide a potential financial impact figure?
- No, we do not have this figure

Potential financial impact figure (currency)
- <Not Applicable>

Potential financial impact figure - minimum (currency)
- <Not Applicable>

Potential financial impact figure - maximum (currency)
- <Not Applicable>
Explanation of financial impact

Primary response to risk

<table>
<thead>
<tr>
<th>Direct operations</th>
<th>Other, please specify (Alternate sources of fuel are identified and acquired to maintain generation activities at the sites.)</th>
</tr>
</thead>
</table>

Description of response
Alternate sources of fuel are identified and acquired to maintain generation activities at the sites. The only generation source in this river basin is a coal plant, where coal inventory is stockpiled.

Cost of response

Explanation of cost of response
Financial investment will depend on the specific project, unable to estimate at this time. Implementation costs vary considerably based on level of process change option selected.

W4.3

(W4.3) Have you identified any water-related opportunities with the potential to have a substantive financial or strategic impact on your business?
Yes, we have identified opportunities, and some/all are being realized

W4.3a

(W4.3a) Provide details of opportunities currently being realized that could have a substantive financial or strategic impact on your business.

Type of opportunity
Resilience

Primary water-related opportunity
Increased resilience to impacts of climate change

Company-specific description & strategy to realize opportunity
Over the past several years, Entergy has participated in the Department of Energy's Partnership for Energy Sector Climate Resilience. As described by the department, this initiative intends to enhance U.S. energy security by improving the resilience of energy infrastructure to extreme temperatures, severe weather and climate change impacts. Entergy realizes the importance of this initiative. The goal is to accelerate investment in technologies, practices, and policies that will enable a resilient 21st-century energy system and to facilitate risk-based decision-making and cost-effective strategies for a more climate-resilient U.S. energy infrastructure. Entergy also deploys storm guys on critical distribution structures in
open marsh areas along the coast. Storm guys are tensioned cables designed to add stability to our structures. On distribution circuits close to the Gulf Coast, we only use class three (or larger) poles for trunk feeder construction. Class three poles are rated to withstand 3,000 lbs. of horizontal load. Climate change may cause flooding and storms to become more frequent. Being resilient to these occurrences is imperative to Entergy's operations. Entergy continually prepares for storms and flooding and limits the potential damages they can inflict on our systems by: • Completing at least one cycle of transmission aerial inspections before June of each year. • Continuing to identify distribution circuits with operational challenges and devices which tend to cause reliability issues and take appropriate steps to improve the performance of these facilities. • Identifying and removing dangerous trees outside of rights-of-way to prevent them from falling into our lines. • Purchasing portable batteries and mobile substation equipment for quick restoration of power when our substations are compromised by storms. • Upgrading communications systems to enhance our ability to limit the impact of outages through improved protection and controls.

Estimated timeframe for realization
More than 6 years

Magnitude of potential financial impact
High

Are you able to provide a potential financial impact figure?
No, we do not have this figure

Potential financial impact figure (currency)
<Not Applicable>

Potential financial impact figure – minimum (currency)
<Not Applicable>

Potential financial impact figure – maximum (currency)
<Not Applicable>

Explanation of financial impact

Type of opportunity
Resilience

Primary water-related opportunity
Increased resilience to impacts of climate change

Company-specific description & strategy to realize opportunity
Entergy recognizes the linkage between climate change and water usage and the importance of water stewardship. Entergy plans to invest over $11.6 billion in capital (as of February 2021) over the next three years (2021E to 2023E) in generation assets and transmission and distribution infrastructure. Initiated in 2002, Entergy's portfolio transformation strategy incorporates cleaner, more efficient generation sources, allowing for the retirement of older, less efficient legacy units. This proposed fleet modernization is expected to drastically reduce Entergy's water withdrawal volumes, as these newer plants would withdraw significantly less
water than our legacy units. Currently, 31% of our portfolio is non-emitting, mostly coming from nuclear energy. Clean, modern natural gas represents 34% of our generation capacity. Since 2000, Entergy’s utilities have added 10.5 GW of highly efficient generation. These units improve system reliability, reduce environmental impacts, and reduce costs for our customers by using less fuel. They also have lower maintenance costs and produce significantly fewer emissions than older generation.

Estimated timeframe for realization
More than 6 years

Magnitude of potential financial impact
High

Are you able to provide a potential financial impact figure?
No, we do not have this figure

Potential financial impact figure (currency)
<Not Applicable>

Potential financial impact figure – minimum (currency)
<Not Applicable>

Potential financial impact figure – maximum (currency)
<Not Applicable>

Explanation of financial impact

W5. Facility-level water accounting

W5.1

(W5.1) For each facility referenced in W4.1c, provide coordinates, water accounting data, and a comparison with the previous reporting year.

Facility reference number
Facility 1

Facility name (optional)
River Bend Station

Country/Area & River basin

| United States of America | Mississippi River |

Latitude
Longitude
-91.330083

Located in area with water stress
No

Primary power generation source for your electricity generation at this facility
Nuclear

Oil & gas sector business division
<Not Applicable>

Total water withdrawals at this facility (megaliters/year)
28109.83

Comparison of total withdrawals with previous reporting year
Higher

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
28109.83

Withdrawals from brackish surface water/seawater
0

Withdrawals from groundwater - renewable
0

Withdrawals from groundwater - non-renewable
0

Withdrawals from produced/entrained water
0

Withdrawals from third party sources
0

Total water discharges at this facility (megaliters/year)
5450.74

Comparison of total discharges with previous reporting year
Higher

Discharges to fresh surface water
5450.74

Discharges to brackish surface water/seawater
0

Discharges to groundwater
Discharges to third party destinations
0

Total water consumption at this facility (megaliters/year)
22659.09

Comparison of total consumption with previous reporting year
Higher

Please explain
Last year, water consumption at the River Bend Station was 24.11% higher than the water consumed during 2019. Power production at the Facility was higher in 2020 compared to 2019, resulting in more water being consumed during 2020. Yearly changes less than 5 percent were considered "about the same." Changes between 5% and 25% were considered "higher" or "lower." Year-to-year changes greater than 25% were considered "much higher"/"much lower."

Facility reference number
Facility 2

Facility name (optional)
Grand Gulf Nuclear Station

Country/Area & River basin
United States of America, Mississippi River

Latitude
32.009462

Longitude
-91.047001

Located in area with water stress
No

Primary power generation source for your electricity generation at this facility
Nuclear

Oil & gas sector business division
<Not Applicable>

Total water withdrawals at this facility (megaliters/year)
23525.82

Comparison of total withdrawals with previous reporting year
Much lower
Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
0

Withdrawals from brackish surface water/seawater
0

Withdrawals from groundwater - renewable
23525.82

Withdrawals from groundwater - non-renewable
0

Withdrawals from produced/entrained water
0

Withdrawals from third party sources
0

Total water discharges at this facility (megaliters/year)
4560.7

Comparison of total discharges with previous reporting year
Much lower

Discharges to fresh surface water
4560.7

Discharges to brackish surface water/seawater
0

Discharges to groundwater
0

Discharges to third party destinations
0

Total water consumption at this facility (megaliters/year)
18965.12

Comparison of total consumption with previous reporting year
Much lower

Please explain
Last year, water consumption at Grand Gulf was much lower than the quantity consumed during 2019. Grand Gulf consumed 18,965.12 megaliters of water during 2020, which is 48.77% lower than the quantity consumed during 2019. Power production at the Facility was lower in 2020 compared to 2019, resulting in less water being consumed during 2020. Yearly changes less than 5 percent were considered "about the same." Changes between 5% and 25% were considered "higher" or "lower." Year-to-year changes greater than 25% were considered "much higher"/"much lower."
Facility reference number
Facility 3

Facility name (optional)
Waterford 3 Nuclear Generating Station

Country/Area & River basin
United States of America Mississippi River

Latitude
29.996843

Longitude
-90.471402

Located in area with water stress
No

Primary power generation source for your electricity generation at this facility
Nuclear

Oil & gas sector business division
<Not Applicable>

Total water withdrawals at this facility (megaliters/year)
1500457.74

Comparison of total withdrawals with previous reporting year
About the same

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
1500457.74

Withdrawals from brackish surface water/seawater
0

Withdrawals from groundwater - renewable
0

Withdrawals from groundwater - non-renewable
0

Withdrawals from produced/entrained water
0

Withdrawals from third party sources
0

Total water discharges at this facility (megaliters/year)
1500457.74
Comparison of total discharges with previous reporting year
About the same

Discharges to fresh surface water
1500457.74

Discharges to brackish surface water/seawater
0

Discharges to groundwater
0

Discharges to third party destinations
0

Total water consumption at this facility (megaliters/year)
0

Comparison of total consumption with previous reporting year
About the same

Please explain
Water consumption at the Waterford 3 Nuclear Generating Station during 2020 was approximately the same as consumption during 2019. The Facility withdraws but does not consume water as it employs once-through cooling, discharging all water that is withdrawn. Yearly changes less than 5 percent were considered "about the same." Changes between 5% and 25% were considered "higher" or "lower." Year-to-year changes greater than 25% were considered "much higher"/"much lower."

Facility reference number
Facility 4

Facility name (optional)
Arkansas Nuclear One

Country/Area & River basin
United States of America
Other, please specify (Arkansas River)

Latitude
35.310705

Longitude
-93.23088

Located in area with water stress
No

Primary power generation source for your electricity generation at this facility
Nuclear
Oil & gas sector business division

Total water withdrawals at this facility (megaliters/year)
1263870.54

Comparison of total withdrawals with previous reporting year
About the same

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
1263870.54

Withdrawals from brackish surface water/seawater
0

Withdrawals from groundwater - renewable
0

Withdrawals from groundwater - non-renewable
0

Withdrawals from produced/entrained water
0

Withdrawals from third party sources
0

Total water discharges at this facility (megaliters/year)
1245349.27

Comparison of total discharges with previous reporting year
About the same

Discharges to fresh surface water
1245349.27

Discharges to brackish surface water/seawater
0

Discharges to groundwater
0

Discharges to third party destinations
0

Total water consumption at this facility (megaliters/year)
18521.28

Comparison of total consumption with previous reporting year
About the same
Please explain
Water consumption at Arkansas Nuclear One during 2020 was about the same as consumption during 2019. The Facility consumed 18,521.28 megaliters of water during 2020, which is 1.00% percent higher than the water consumed during 2019. Yearly changes less than 5 percent were considered "about the same." Changes between 5% and 25% were considered "higher" or "lower." Year-to-year changes greater than 25% were considered "much higher"/"much lower."

Facility reference number
Facility 5

Facility name (optional)
Indian Point Energy Center

Country/Area & River basin
United States of America | Hudson River

Latitude
41.270801

Longitude
-73.953142

Located in area with water stress
No

Primary power generation source for your electricity generation at this facility
Nuclear

Oil & gas sector business division
<Not Applicable>

Total water withdrawals at this facility (megaliters/year)
87878.08

Comparison of total withdrawals with previous reporting year
Much lower

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
0

Withdrawals from brackish surface water/seawater
87878.08

Withdrawals from groundwater - renewable
0

Withdrawals from groundwater - non-renewable
0
Withdrawals from produced/entrained water
0

Withdrawals from third party sources
0

Total water discharges at this facility (megaliters/year)
87878.08

Comparison of total discharges with previous reporting year
Much lower

Discharges to fresh surface water
0

Discharges to brackish surface water/seawater
87878.08

Discharges to groundwater
0

Discharges to third party destinations
0

Total water consumption at this facility (megaliters/year)
0

Comparison of total consumption with previous reporting year
About the same

Please explain
Water consumption at the Indian Point Energy Center during 2020 was approximately the same as consumption during 2019. The Facility withdraws but does not consume water as it employs once-through cooling, discharging all water that is withdrawn. Yearly changes less than 5 percent were considered "about the same." Changes between 5% and 25% were considered "higher" or "lower." Year-to-year changes greater than 25% were considered "much higher"/"much lower."

Facility reference number
Facility 6

Facility name (optional)
Lewis Creek Power Plant

Country/Area & River basin
United States of America

Latitude
30.436961
Longitude
-95.520726

Located in area with water stress
Yes

Primary power generation source for your electricity generation at this facility
Gas

Oil & gas sector business division
<Not Applicable>

Total water withdrawals at this facility (megaliters/year)
588363.9

Comparison of total withdrawals with previous reporting year
Higher

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
588363.9

Withdrawals from brackish surface water/seawater
0

Withdrawals from groundwater - renewable
0

Withdrawals from groundwater - non-renewable
0

Withdrawals from produced/entrained water
0

Withdrawals from third party sources
0

Total water discharges at this facility (megaliters/year)
588363.9

Comparison of total discharges with previous reporting year
Higher

Discharges to fresh surface water
588363.9

Discharges to brackish surface water/seawater
0

Discharges to groundwater
0
Discharges to third party destinations
0

Total water consumption at this facility (megaliters/year)
0

Comparison of total consumption with previous reporting year
About the same

Please explain
Water consumption at the Lewis Creek Power Plant during 2020 was approximately the same as consumption during 2019. The Facility withdraws but does not consume water as it employs once-through cooling, discharging all water that is withdrawn. Yearly changes less than 5 percent were considered "about the same." Changes between 5% and 25% were considered "higher" or "lower." Year-to-year changes greater than 25% were considered "much higher"/"much lower."

Facility reference number
Facility 7

Facility name (optional)
Wayne Leonard (SCPS)

Country/Area & River basin
United States of America Mississippi River

Latitude
30.005737

Longitude
-90.452922

Located in area with water stress
No

Primary power generation source for your electricity generation at this facility
Gas

Oil & gas sector business division
<Not Applicable>

Total water withdrawals at this facility (megaliters/year)
6566.18

Comparison of total withdrawals with previous reporting year
This is our first year of measurement

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
6566.18
Withdrawals from brackish surface water/seawater
0

Withdrawals from groundwater - renewable
0

Withdrawals from groundwater - non-renewable
0

Withdrawals from produced/entrained water
0

Withdrawals from third party sources
0

Total water discharges at this facility (megaliters/year)
3364.83

Comparison of total discharges with previous reporting year
This is our first year of measurement

Discharges to fresh surface water
3364.83

Discharges to brackish surface water/seawater
0

Discharges to groundwater
0

Discharges to third party destinations
0

Total water consumption at this facility (megaliters/year)
3201.34

Comparison of total consumption with previous reporting year
This is our first year of measurement

Please explain
2020 was the first year of measurement for the Facility, which recently commenced commercial operation.

Facility reference number
Facility 8

Facility name (optional)
Lake Charles

Country/Area & River basin
United States of America Sabine River
Latitude
30.271896

Longitude
-93.290606

Located in area with water stress
No

Primary power generation source for your electricity generation at this facility
Gas

Oil & gas sector business division
<Not Applicable>

Total water withdrawals at this facility (megaliters/year)
4394.65

Comparison of total withdrawals with previous reporting year
This is our first year of measurement

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
4394.65

Withdrawals from brackish surface water/seawater
0

Withdrawals from groundwater - renewable
0

Withdrawals from groundwater - non-renewable
0

Withdrawals from produced/entrained water
0

Withdrawals from third party sources
0

Total water discharges at this facility (megaliters/year)
1132.13

Comparison of total discharges with previous reporting year
This is our first year of measurement

Discharges to fresh surface water
1132.13

Discharges to brackish surface water/seawater
0
Discharges to groundwater
0

Discharges to third party destinations
0

Total water consumption at this facility (megaliters/year)
3262.52

Comparison of total consumption with previous reporting year
This is our first year of measurement

Please explain
2020 was the first year of measurement for the Facility, which recently commenced commercial operation.

Facility reference number
Facility 9

Facility name (optional)
White Bluff Power Plant

Country/Area & River basin
United States of America
Other, please specify (Arkansas River)

Latitude
34.4236

Longitude
-92.1392

Located in area with water stress
No

Primary power generation source for your electricity generation at this facility
Coal - hard

Oil & gas sector business division
<Not Applicable>

Total water withdrawals at this facility (megaliters/year)
3105.86

Comparison of total withdrawals with previous reporting year
Much lower

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
3105.86

Withdrawals from brackish surface water/seawater
Withdrawals from groundwater - renewable
0

Withdrawals from groundwater - non-renewable
0

Withdrawals from produced/entrained water
0

Withdrawals from third party sources
0

Total water discharges at this facility (megaliters/year)
2692.09

Comparison of total discharges with previous reporting year
Lower

Discharges to fresh surface water
2692.09

Discharges to brackish surface water/seawater
0

Discharges to groundwater
0

Discharges to third party destinations
0

Total water consumption at this facility (megaliters/year)
413.77

Comparison of total consumption with previous reporting year
Much lower

Please explain
Last year, water consumption at White Bluff was significantly lower than the quantity consumed during 2019. The Facility consumed 413.77 megalitres of water during 2020, which is 97.44% lower than the water consumed during 2019. Power production at the Facility was lower in 2020 compared to 2019, resulting in less water being consumed during 2020. Yearly changes less than 5 percent were considered "about the same." Changes between 5% and 25% were considered "higher" or "lower." Year-to-year changes greater than 25% were considered "much higher"/"much lower."

Facility reference number
Facility 10
Facility name (optional)
Independence Power Plant

Country/Area & River basin
United States of America Other, please specify (White River)

Latitude
35.6733

Longitude
-91.4083

Located in area with water stress
No

Primary power generation source for your electricity generation at this facility
Coal - hard

Oil & gas sector business division
<Not Applicable>

Total water withdrawals at this facility (megaliters/year)
8462.45

Comparison of total withdrawals with previous reporting year
Much lower

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
8462.45

Withdrawals from brackish surface water/seawater
0

Withdrawals from groundwater - renewable
0

Withdrawals from groundwater - non-renewable
0

Withdrawals from produced/entrained water
0

Withdrawals from third party sources
0

Total water discharges at this facility (megaliters/year)
1281.22

Comparison of total discharges with previous reporting year
Much lower
Discharges to fresh surface water
1281.22

Discharges to brackish surface water/seawater
0

Discharges to groundwater
0

Discharges to third party destinations
0

Total water consumption at this facility (megaliters/year)
7181.23

Comparison of total consumption with previous reporting year
Much lower

Please explain
Last year, water consumption at Independence was 35.26% lower than the water consumed during 2019. Power production at the Facility was lower in 2020 compared to 2019, resulting in less water being consumed during 2020. Yearly changes less than 5 percent were considered "about the same." Changes between 5% and 25% were considered "higher" or "lower." Year-to-year changes greater than 25% were considered "much higher"/"much lower."

Facility reference number
Facility 11

Facility name (optional)
Hot Spring Energy Facility

Country/Area & River basin
United States of America Other, please specify (Ouachita River)

Latitude
34.2963

Longitude
-92.8683

Located in area with water stress
No

Primary power generation source for your electricity generation at this facility
Gas

Oil & gas sector business division
<Not Applicable>

Total water withdrawals at this facility (megaliters/year)
1545.4

Comparison of total withdrawals with previous reporting year
Much lower

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
1545.4

Withdrawals from brackish surface water/seawater
0

Withdrawals from groundwater - renewable
0

Withdrawals from groundwater - non-renewable
0

Withdrawals from produced/entrained water
0

Withdrawals from third party sources
0

Total water discharges at this facility (megaliters/year)
208.2

Comparison of total discharges with previous reporting year
Lower

Discharges to fresh surface water
208.2

Discharges to brackish surface water/seawater
0

Discharges to groundwater
0

Discharges to third party destinations
0

Total water consumption at this facility (megaliters/year)
1337.2

Comparison of total consumption with previous reporting year
Much lower

Please explain
Last year, water consumption at Hot Spring was 56.92% lower than the water consumed during 2019. Power production at the Facility was lower in 2020 compared to 2019, resulting in less water being consumed during 2020. Yearly changes less than 5 percent were considered
"about the same." Changes between 5% and 25% were considered "higher" or "lower." Year-to-year changes greater than 25% were considered "much higher"/"much lower."

Facility reference number
Facility 12

Facility name (optional)
Ouachita Gas Power Plant

Country/Area & River basin
United States of America Other, please specify (Ouachita River)

Latitude
32.7056

Longitude
-92.0697

Located in area with water stress
No

Primary power generation source for your electricity generation at this facility
Gas

Oil & gas sector business division
<Not Applicable>

Total water withdrawals at this facility (megaliters/year)
11.03

Comparison of total withdrawals with previous reporting year
Lower

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
11.03

Withdrawals from brackish surface water/seawater
0

Withdrawals from groundwater - renewable
0

Withdrawals from groundwater - non-renewable
0

Withdrawals from produced/entrained water
0

Withdrawals from third party sources
0
Total water discharges at this facility (megaliters/year)
2.06

Comparison of total discharges with previous reporting year
Lower

Discharges to fresh surface water
2.06

Discharges to brackish surface water/seawater
0

Discharges to groundwater
0

Discharges to third party destinations
0

Total water consumption at this facility (megaliters/year)
8.97

Comparison of total consumption with previous reporting year
Lower

Please explain
Last year, water consumption at the Facility was 6.37% lower than the water consumed during 2019. Power production at the Facility was lower in 2020 compared to 2019, resulting in less water being consumed during 2020. Yearly changes less than 5 percent were considered "about the same." Changes between 5% and 25% were considered "higher" or "lower." Year-to-year changes greater than 25% were considered "much higher"/"much lower."

Facility reference number
Facility 13

Facility name (optional)
Union Power Station

Country/Area & River basin
| United States of America | Other, please specify (Ouachita River) |

Latitude
33.2961

Longitude
-92.5933

Located in area with water stress
No

Primary power generation source for your electricity generation at this facility

https://www.cdp.net/en/formatted_responses/responses?campaign_id=74241104&discloser_id=892833&locale=en&organization_name=Entergy+...
Gas

Oil & gas sector business division
<Not Applicable>

Total water withdrawals at this facility (megaliters/year)
9176.84

Comparison of total withdrawals with previous reporting year
Lower

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
0

Withdrawals from brackish surface water/seawater
0

Withdrawals from groundwater - renewable
0

Withdrawals from groundwater - non-renewable
0

Withdrawals from produced/entrained water
0

Withdrawals from third party sources
9176.84

Total water discharges at this facility (megaliters/year)
994

Comparison of total discharges with previous reporting year
Lower

Discharges to fresh surface water
994

Discharges to brackish surface water/seawater
0

Discharges to groundwater
0

Discharges to third party destinations
0

Total water consumption at this facility (megaliters/year)
8182.83

Comparison of total consumption with previous reporting year
Lower

Please explain
Last year, water consumption at the Facility was 11.81% lower than the water consumed during 2019. Power production at the Facility was lower in 2020 compared to 2019, resulting in less water being consumed during 2020. Yearly changes less than 5 percent were considered "about the same." Changes between 5% and 25% were considered "higher" or "lower." Year-to-year changes greater than 25% were considered "much higher"/"much lower."

Facility reference number
Facility 14

Facility name (optional)
Perryville Power Station

Country/Area & River basin
United States of America
Other, please specify (Ouachita River)

Latitude
32.6914

Longitude
-92.0192

Located in area with water stress
No

Primary power generation source for your electricity generation at this facility
Gas

Oil & gas sector business division
<Not Applicable>

Total water withdrawals at this facility (megaliters/year)
92.36

Comparison of total withdrawals with previous reporting year
Much higher

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
92.36

Withdrawals from brackish surface water/seawater
0

Withdrawals from groundwater - renewable
0

Withdrawals from groundwater - non-renewable
Withdrawals from produced/entrained water
0

Withdrawals from third party sources
0

Total water discharges at this facility (megaliters/year)
18.7

Comparison of total discharges with previous reporting year
Much higher

Discharges to fresh surface water
18.7

Discharges to brackish surface water/seawater
0

Discharges to groundwater
0

Discharges to third party destinations
0

Total water consumption at this facility (megaliters/year)
73.66

Comparison of total consumption with previous reporting year
Much higher

Please explain
Last year, water consumption at Perryville was significantly higher than the quantity consumed during 2019. The Facility consumed 73.66 megalitres of water during 2020, which is 3797.57% higher than the water consumed during 2019. Power production at the Facility was higher in 2020 compared to 2019, resulting in more water being consumed during 2020. Yearly changes less than 5 percent were considered "about the same." Changes between 5% and 25% were considered "higher" or "lower." Year-to-year changes greater than 25% were considered "much higher"/"much lower."

Facility reference number
Facility 15

Facility name (optional)
Lake Catherine Power Station

Country/Area & River basin
United States of America
Other, please specify (Ouachita River)
Latitude
34.4341

Longitude
-92.9046

Located in area with water stress
No

Primary power generation source for your electricity generation at this facility
Gas

Oil & gas sector business division
<Not Applicable>

Total water withdrawals at this facility (megaliters/year)
269862.01

Comparison of total withdrawals with previous reporting year
Much higher

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
269862.01

Withdrawals from brackish surface water/seawater
0

Withdrawals from groundwater - renewable
0

Withdrawals from groundwater - non-renewable
0

Withdrawals from produced/entrained water
0

Withdrawals from third party sources
0

Total water discharges at this facility (megaliters/year)
269862.01

Comparison of total discharges with previous reporting year
Much higher

Discharges to fresh surface water
269862.01

Discharges to brackish surface water/seawater
0
Discharges to groundwater
0

Discharges to third party destinations
0

Total water consumption at this facility (megaliters/year)
0

Comparison of total consumption with previous reporting year
About the same

Please explain
Water consumption at the Facility during 2020 was approximately the same as consumption during 2019. The Facility withdraws but does not consume water as it employs once-through cooling, discharging all water that is withdrawn. Yearly changes less than 5 percent were considered "about the same." Changes between 5% and 25% were considered "higher" or "lower." Year-to-year changes greater than 25% were considered "much higher"/"much lower."

Facility reference number
Facility 16

Facility name (optional)
Waterford 1 & 2 Gas Power Plant

Country/Area & River basin
United States of America Mississippi River

Latitude
29.9994

Longitude
-90.4758

Located in area with water stress
No

Primary power generation source for your electricity generation at this facility
Gas

Oil & gas sector business division
<Not Applicable>

Total water withdrawals at this facility (megaliters/year)
503727.96

Comparison of total withdrawals with previous reporting year
About the same
Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
503727.96

Withdrawals from brackish surface water/seawater
0

Withdrawals from groundwater - renewable
0

Withdrawals from groundwater - non-renewable
0

Withdrawals from produced/entrained water
0

Withdrawals from third party sources
0

Total water discharges at this facility (megaliters/year)
503727.96

Comparison of total discharges with previous reporting year
About the same

Discharges to fresh surface water
503727.96

Discharges to brackish surface water/seawater
0

Discharges to groundwater
0

Discharges to third party destinations
0

Total water consumption at this facility (megaliters/year)
0

Comparison of total consumption with previous reporting year
About the same

Please explain
Water consumption at the Facility during 2020 was approximately the same as consumption during 2019. The Facility withdraws but does not consume water as it employs once-through cooling, discharging all water that is withdrawn. Yearly changes less than 5 percent were considered "about the same." Changes between 5% and 25% were considered "higher" or "lower." Year-to-year changes greater than 25% were considered "much higher"/"much lower."
Facility reference number
Facility 17

Facility name (optional)
Little Gypsy Power Plant

Country/Area & River basin
United States of America Mississippi River

Latitude
30.0033

Longitude
-90.4611

Located in area with water stress
No

Primary power generation source for your electricity generation at this facility
Gas

Oil & gas sector business division
<Not Applicable>

Total water withdrawals at this facility (megaliters/year)
595820.03

Comparison of total withdrawals with previous reporting year
About the same

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
595820.03

Withdrawals from brackish surface water/seawater
0

Withdrawals from groundwater - renewable
0

Withdrawals from groundwater - non-renewable
0

Withdrawals from produced/entrained water
0

Withdrawals from third party sources
0

Total water discharges at this facility (megaliters/year)
572445.11
Comparison of total discharges with previous reporting year
About the same

Discharges to fresh surface water
572445.11

Discharges to brackish surface water/seawater
0

Discharges to groundwater
0

Discharges to third party destinations
0

Total water consumption at this facility (megaliters/year)
23374.92

Comparison of total consumption with previous reporting year
About the same

Please explain
Water consumption at the Facility during 2020 was approximately the same as consumption during 2019. The Facility consumed 23,374.92 megalitres of water during 2020, which is 1.10% higher than the water consumed during 2019. Yearly changes less than 5 percent were considered "about the same." Changes between 5% and 25% were considered "higher" or "lower." Year-to-year changes greater than 25% were considered "much higher"/"much lower."

Facility reference number
Facility 18

Facility name (optional)
Ninemile Point Steam Electric Station

Country/Area & River basin
| United States of America | Mississippi River |

Latitude
29.9472

Longitude
-90.1458

Located in area with water stress
No

Primary power generation source for your electricity generation at this facility
Gas

Oil & gas sector business division
Total water withdrawals at this facility (megaliters/year)
1103581.59

Comparison of total withdrawals with previous reporting year
Lower

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
1103581.59

Withdrawals from brackish surface water/seawater
0

Withdrawals from groundwater - renewable
0

Withdrawals from groundwater - non-renewable
0

Withdrawals from produced/entrained water
0

Withdrawals from third party sources
0

Total water discharges at this facility (megaliters/year)
1102754.09

Comparison of total discharges with previous reporting year
Lower

Discharges to fresh surface water
1102754.09

Discharges to brackish surface water/seawater
0

Discharges to groundwater
0

Discharges to third party destinations
0

Total water consumption at this facility (megaliters/year)
827.5

Comparison of total consumption with previous reporting year
Much higher

Please explain
Last year, water consumption at the Facility was much higher than the quantity consumed during 2019. Power production at the Facility was higher in 2020 compared to 2019, resulting in more water being consumed during 2020. Yearly changes less than 5 percent were considered "about the same." Changes between 5% and 25% were considered "higher" or "lower." Year-to-year changes greater than 25% were considered "much higher"/"much lower."

Facility reference number
Facility 19

Facility name (optional)
Baxter Wilson Power Plant

Country/Area & River basin
| United States of America | Mississippi River |

Latitude
32.2831

Longitude
-90.9306

Located in area with water stress
No

Primary power generation source for your electricity generation at this facility
Gas

Oil & gas sector business division
<Not Applicable>

Total water withdrawals at this facility (megaliters/year)
232982.11

Comparison of total withdrawals with previous reporting year
Lower

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
232982.11

Withdrawals from brackish surface water/seawater
0

Withdrawals from groundwater - renewable
0

Withdrawals from groundwater - non-renewable
0

Withdrawals from produced/entrained water
Withdrawals from third party sources
0

Total water discharges at this facility (megaliters/year)
232877.79

Comparison of total discharges with previous reporting year
Lower

Discharges to fresh surface water
232877.79

Discharges to brackish surface water/seawater
0

Discharges to groundwater
0

Discharges to third party destinations
0

Total water consumption at this facility (megaliters/year)
104.32

Comparison of total consumption with previous reporting year
Much higher

Please explain
Last year, water consumption at the Facility was much higher than the quantity consumed during 2019. Power production at the Facility was higher in 2020 compared to 2019, resulting in more water being consumed during 2020. Yearly changes less than 5 percent were considered "about the same." Changes between 5% and 25% were considered "higher" or "lower." Year-to-year changes greater than 25% were considered "much higher"/"much lower."

Facility reference number
Facility 20

Facility name (optional)
Gerald Andrus Gas Power Plant

Country/Area & River basin
United States of America Mississippi River

Latitude
33.3503

Longitude
91.1181
Located in area with water stress
No

Primary power generation source for your electricity generation at this facility
Gas

Oil & gas sector business division
<Not Applicable>

Total water withdrawals at this facility (megaliters/year)
139441.13

Comparison of total withdrawals with previous reporting year
About the same

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
139441.13

Withdrawals from brackish surface water/seawater
0

Withdrawals from groundwater - renewable
0

Withdrawals from groundwater - non-renewable
0

Withdrawals from produced/entrained water
0

Withdrawals from third party sources
0

Total water discharges at this facility (megaliters/year)
139441.13

Comparison of total discharges with previous reporting year
About the same

Discharges to fresh surface water
139441.13

Discharges to brackish surface water/seawater
0

Discharges to groundwater
0

Discharges to third party destinations
0
Total water consumption at this facility (megaliters/year)
0

Comparison of total consumption with previous reporting year
About the same

Please explain
Water consumption at the Facility during 2020 was approximately the same as consumption during 2019. The Facility withdraws but does not consume water as it employs once-through cooling, discharging all water that is withdrawn. Yearly changes less than 5 percent were considered "about the same." Changes between 5% and 25% were considered "higher" or "lower." Year-to-year changes greater than 25% were considered "much higher"/"much lower."

Facility reference number
Facility 21

Facility name (optional)
Nelson Power Plant

Country/Area & River basin
United States of America, Sabine River

Latitude
30.2861

Longitude
-93.2917

Located in area with water stress
No

Primary power generation source for your electricity generation at this facility
Coal - hard

Oil & gas sector business division
<Not Applicable>

Total water withdrawals at this facility (megaliters/year)
530.17

Comparison of total withdrawals with previous reporting year
Much lower

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
0

Withdrawals from brackish surface water/seawater
0
Withdrawals from groundwater - renewable
0

Withdrawals from groundwater - non-renewable
0

Withdrawals from produced/entrained water
0

Withdrawals from third party sources
530.17

Total water discharges at this facility (megaliters/year)
530.17

Comparison of total discharges with previous reporting year
Much higher

Discharges to fresh surface water
530.17

Discharges to brackish surface water/seawater
0

Discharges to groundwater
0

Discharges to third party destinations
0

Total water consumption at this facility (megaliters/year)
0

Comparison of total consumption with previous reporting year
Much lower

Please explain
Water consumption at the Facility during 2020 was much lower than consumption during 2019. The Facility withdraws but does not consume water as it employs once-through cooling, discharging all water that is withdrawn. Yearly changes less than 5 percent were considered "about the same." Changes between 5% and 25% were considered "higher" or "lower." Year-to-year changes greater than 25% were considered "much higher"/"much lower."

Facility reference number
Facility 22

Facility name (optional)
Sabine Gas Power Plant

Country/Area & River basin

United States of America
Sabine River

Latitude
30.0242

Longitude
-93.875

Located in area with water stress
No

Primary power generation source for your electricity generation at this facility
Gas

Oil & gas sector business division
<Not Applicable>

Total water withdrawals at this facility (megaliters/year)
1400820.09

Comparison of total withdrawals with previous reporting year
About the same

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
0

Withdrawals from brackish surface water/seawater
1400820.09

Withdrawals from groundwater - renewable
0

Withdrawals from groundwater - non-renewable
0

Withdrawals from produced/entrained water
0

Withdrawals from third party sources
0

Total water discharges at this facility (megaliters/year)
1392336.2

Comparison of total discharges with previous reporting year
About the same

Discharges to fresh surface water
0

Discharges to brackish surface water/seawater
Discharges to groundwater
0

Discharges to third party destinations
0

Total water consumption at this facility (megaliters/year)
8483.89

Comparison of total consumption with previous reporting year
Much higher

Please explain
Last year, water consumption at the Facility was much higher than the quantity consumed during 2019. The Facility consumed 8483.89 megalitres of water during 2020, which is 216.28% higher than the water consumed during 2019. Power production at the Facility was higher in 2020 compared to 2019, resulting in more water being consumed during 2020. Yearly changes less than 5 percent were considered "about the same." Changes between 5% and 25% were considered "higher" or "lower." Year-to-year changes greater than 25% were considered "much higher"/"much lower."

Facility reference number
Facility 23

Facility name (optional)
Palisades Power Plant

Country/Area & River basin
United States of America St. Lawrence

Latitude
42.324567

Longitude
-86.314595

Located in area with water stress
No

Primary power generation source for your electricity generation at this facility
Nuclear

Oil & gas sector business division
<Not Applicable>

Total water withdrawals at this facility (megaliters/year)
163438.71
Comparison of total withdrawals with previous reporting year
Lower

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
163438.71

Withdrawals from brackish surface water/seawater
0

Withdrawals from groundwater - renewable
0

Withdrawals from groundwater - non-renewable
0

Withdrawals from produced/entrained water
0

Withdrawals from third party sources
0

Total water discharges at this facility (megaliters/year)
142951.04

Comparison of total discharges with previous reporting year
Lower

Discharges to fresh surface water
142951.04

Discharges to brackish surface water/seawater
0

Discharges to groundwater
0

Discharges to third party destinations
0

Total water consumption at this facility (megaliters/year)
20487.67

Comparison of total consumption with previous reporting year
Lower

Please explain
Last year, water consumption at the Facility was 13.48% lower than the water consumed during 2019. Power production at the Facility was lower in 2020 compared to 2019, resulting in less water being consumed during 2020. Yearly changes less than 5 percent were considered
"about the same." Changes between 5% and 25% were considered "higher" or "lower." Year-to-year changes greater than 25% were considered "much higher"/"much lower."

Facility reference number
Facility 24

Facility name (optional)
Attala Energy Facility

Country/Area & River basin
United States of America
Other, please specify (Big Black River)

Latitude
33.0142

Longitude
-89.6758

Located in area with water stress
No

Primary power generation source for your electricity generation at this facility
Gas

Oil & gas sector business division
<Not Applicable>

Total water withdrawals at this facility (megaliters/year)
1998.02

Comparison of total withdrawals with previous reporting year
About the same

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
1998.02

Withdrawals from brackish surface water/seawater
0

Withdrawals from groundwater - renewable
0

Withdrawals from groundwater - non-renewable
0

Withdrawals from produced/entrained water
0

Withdrawals from third party sources
0
Total water discharges at this facility (megaliters/year)
303.85

Comparison of total discharges with previous reporting year
Lower

Discharges to fresh surface water
303.85

Discharges to brackish surface water/seawater
0

Discharges to groundwater
0

Discharges to third party destinations
0

Total water consumption at this facility (megaliters/year)
1694.17

Comparison of total consumption with previous reporting year
Higher

Please explain
Last year, water consumption at Attala was 9.82% higher than the water consumed during 2019. Power production at the Facility was higher in 2020 compared to 2019, resulting in more water being consumed during 2020. Yearly changes less than 5 percent were considered "about the same." Changes between 5% and 25% were considered "higher" or "lower." Year-to-year changes greater than 25% were considered "much higher"/"much lower."

W5.1a

(W5.1a) For the facilities referenced in W5.1, what proportion of water accounting data has been externally verified?

Water withdrawals – total volumes

% verified
76-100

What standard and methodology was used?
Typically pump curves and run times are used to quantify this; the verification of water data is performed by a third-party and is based on the data reported by the sites using this quantification method.

Water withdrawals – volume by source
% verified

76-100

What standard and methodology was used?
Typically pump curves and run times are used to quantify this; the verification of water data is performed by a third-party and is based on the data reported by the sites using this quantification method.

Water withdrawals – quality

% verified

76-100

What standard and methodology was used?

<Not Applicable>

Water discharges – total volumes

% verified

76-100

What standard and methodology was used?

Standards and methodologies as contained in Federal and State NPDES Permits; the verification of water data is performed by a third-party and is based on the data reported by the sites using this quantification method.

Water discharges – volume by destination

% verified

76-100

What standard and methodology was used?

Standards and methodologies as contained in Federal and State NPDES Permits; the verification of water data is performed by a third-party and is based on the data reported by the sites using this quantification method.

Water discharges – volume by treatment method

% verified

76-100

What standard and methodology was used?

Standards and methodologies as contained in Federal and State NPDES Permits.

Water discharge quality – quality by standard effluent parameters

% verified

76-100

What standard and methodology was used?

Standards and methodologies as contained in Federal and State NPDES Permits.

Water discharge quality – temperature
What standard and methodology was used?
Standards and methodologies as contained in Federal and State NPDES Permits.

Water consumption – total volume

What standard and methodology was used?
<Not Applicable>

Water recycled/reused

What standard and methodology was used?
<Not Applicable>

W6. Governance

(W6.1) Does your organization have a water policy?
Yes, we have a documented water policy that is publicly available

(W6.1a) Select the options that best describe the scope and content of your water policy.

<table>
<thead>
<tr>
<th>Scope</th>
<th>Content</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scope</td>
<td>Content</td>
<td>Please explain</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Company-wide</td>
<td>Description of business dependency on water</td>
<td>Entergy's Environmental Management Policy, Environmental Management System Procedure (EMS), and Water Management Standard apply to all operations of the company. The purpose of these documents is to provide clear direction to all employees regarding the processes and expectations for ensuring water management excellence. Both plans are company-wide and publicly available so that employees and stakeholders can be aware of Entergy's commitment to water protection. Another publicly available water policy document is Entergy's Water Management Overview which expands upon the objectives outlined in the EMS and Water Management Standard by providing specific water-related goals and targets that Entergy is working towards achieving. For example, Entergy recognizes the environmental linkage between water and climate change. Entergy has participated in the Department of Energy's Partnership for Energy Sector Climate Resilience. As described by the department, this initiative intends to enhance U.S. energy security by improving the resilience of energy infrastructure to extreme weather and climate change impacts. The goal is to accelerate investment in technologies, practices, and policies that will enable a resilient 21st century energy system and facilitate risk-based decision-making and cost-effective strategies for a more climate-resilient U.S. energy infrastructure. Further details are provided in the Water Management Overview.</td>
</tr>
<tr>
<td>Company-wide</td>
<td>Description of business impact on water</td>
<td>https://www.entergy.com/userfiles/environment/docs/water.pdf Across our operations, Entergy protects water resources by maintaining a compliance rate with state and federal water pollution control permit requirements of at least 99 percent from year to year; however, the Water Management Overview does not only stress the importance of regulatory compliance when it comes to water stewardship. The Overview also increases awareness of water-related issues and incidents at Entergy and spotlights Entergy's progress towards water-related innovations and engineering. The policies, procedures, and standards outlined in these three documents also ensure consistency across the Entergy system. Entergy's environmental vision and environmental policy and management system are publicly available on the company's website. http://www.entergy.com/environment/.</td>
</tr>
<tr>
<td>Company-wide</td>
<td>Description of water-related performance standards for direct operations</td>
<td></td>
</tr>
<tr>
<td>Company-wide</td>
<td>Description of water-related standards for procurement</td>
<td></td>
</tr>
<tr>
<td>Company-wide</td>
<td>Company water targets and goals</td>
<td></td>
</tr>
<tr>
<td>Company-wide</td>
<td>Commitment to stakeholder awareness and education</td>
<td></td>
</tr>
<tr>
<td>Company-wide</td>
<td>Commitment to water stewardship and/or collective action</td>
<td></td>
</tr>
<tr>
<td>Company-wide</td>
<td>Commitment to safely managed Water, Sanitation and Hygiene (WASH) in the workplace</td>
<td></td>
</tr>
<tr>
<td>Company-wide</td>
<td>Commitment to safely managed Water, Sanitation and Hygiene (WASH) in local communities</td>
<td></td>
</tr>
<tr>
<td>Company-wide</td>
<td>Acknowledgement of the human right to water and sanitation</td>
<td></td>
</tr>
<tr>
<td>Company-wide</td>
<td>Recognition of environmental linkages, for example, due to climate change</td>
<td></td>
</tr>
</tbody>
</table>

W6.2

(W6.2) *Is there board level oversight of water-related issues within your organization?*

Yes
(W6.2a) Identify the position(s) (do not include any names) of the individual(s) on the board with responsibility for water-related issues.

<table>
<thead>
<tr>
<th>Position of individual</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chief Executive Officer (CEO)</td>
<td>Entergy's CEO has the overarching responsibility for managing risk including water management risk, executing strategy that positions the company to prosper in a constrained economy and ensuring actions are taken to meet Entergy's environmental strategy. Additionally, The CEO chairs the Board of Directors and oversees Entergy's entire corporate structure, governance and management.</td>
</tr>
<tr>
<td>Other, please specify (Audit Committee of the Board of Directors)</td>
<td>Entergy's Audit Committee of the Board of Directors has the responsibility for oversight and implementation of Entergy's position, performance and advocacy associated with any material water issues.</td>
</tr>
<tr>
<td>Other, please specify (Executive Vice President & General Counsel)</td>
<td>Entergy's Executive Vice President has the responsibility for oversight and implementation of Entergy's position, performance and advocacy associated with any material water issues. Additionally, the Vice President has the responsibility of approving Entergy EMS Procedures and revisions as well as interpreting Entergy EMS Procedures, as needed.</td>
</tr>
<tr>
<td>Other, please specify (Senior Vice President, Sustainable Development, Planning and Operations)</td>
<td>Entergy's SVP, Sustainable Development, Planning and Operations has the responsibility for oversight and implementation of Entergy's transition to a generation mix with a lower carbon footprint, which also results in a lower water footprint.</td>
</tr>
<tr>
<td>Other, please specify (Vice President, Sustainability & Environmental Policy)</td>
<td>Entergy's Vice President of Sustainability & Environmental Policy has the responsibility for oversight and implementation of Entergy's position, performance and advocacy associated with any material water issues.</td>
</tr>
<tr>
<td>Other, please specify (Chairman)</td>
<td>Entergy's Chairman has the overarching responsibility for managing risk including water management risk, executing strategy that positions the company to prosper in a constrained economy and ensuring actions are taken to meet Entergy's environmental strategy.</td>
</tr>
<tr>
<td>Director on board</td>
<td>The Board of Directors in 2002 adopted Entergy's Environmental Vision Statement which details the company's commitment to operate its business in ways that preserve and protect our environment.</td>
</tr>
<tr>
<td>Other, please specify (Director, Corporate Risk)</td>
<td>Water permitting requirements, stormwater impacts, surface water impacts, wetlands impacts, and other water-related risks are identified on a corporate level and for significant capital projects and transactions. The Director, Corporate Risk's capital expenditure risk review process includes assessing water-related and other environmental risks. Water issues are included in a scenario analysis Entergy conducts as part of its overall due diligence review and analysis of any expansion, acquisition, new project, or investment. Depending on the project, scenario analysis may include water availability issues, quality issues, intake concerns, wetlands issues, and water-related biodiversity impacts. Desktop evaluations are conducted using ArcGIS to determine the water impacts of transmission construction projects in preliminary planning phases.</td>
</tr>
</tbody>
</table>
(W6.2b) Provide further details on the board's oversight of water-related issues.

<table>
<thead>
<tr>
<th>Frequency that water-related issues are a scheduled agenda item</th>
<th>Governance mechanisms into which water-related issues are integrated</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scheduled - some meetings</td>
<td>Monitoring implementation and performance</td>
<td>Senior Management reviews water issues quarterly at Environmental Leadership Team meetings. Briefings on water issues are conducted on a quarterly basis. Material water issues are typically reported quarterly and contained in Entergy's 10K. However, issues that are more immediate or of a material nature may be reported more frequently.</td>
</tr>
<tr>
<td>Row 1</td>
<td>Overseeing acquisitions and divestiture</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Overseeing major capital expenditures</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reviewing and guiding annual budgets</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reviewing and guiding business plans</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reviewing and guiding major plans of action</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reviewing and guiding risk management policies</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reviewing and guiding strategy</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reviewing and guiding corporate responsibility strategy</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reviewing innovation/R&D priorities</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Setting performance objectives</td>
<td></td>
</tr>
</tbody>
</table>
(W6.3) Provide the highest management-level position(s) or committee(s) with responsibility for water-related issues (do not include the names of individuals).

Name of the position(s) and/or committee(s)
Chief Executive Officer (CEO)

Responsibility
Both assessing and managing water-related risks and opportunities

Frequency of reporting to the board on water-related issues
Quarterly

Please explain
Entergy’s CEO has the overarching responsibility for managing risk including water management risk, executing strategy that positions the company to prosper in a constrained economy and ensuring actions are taken to meet Entergy’s environmental strategy. Additionally, the CEO chairs the Board of Directors and oversees Entergy's entire corporate structure, governance and management.

Name of the position(s) and/or committee(s)
Other, please specify (Audit Committee of the Board of Directors)

Responsibility
Both assessing and managing water-related risks and opportunities

Frequency of reporting to the board on water-related issues
Quarterly

Please explain
Entergy’s Audit Committee of the Board of Directors has the responsibility for oversight and implementation of Entergy's position, performance and advocacy associated with any material water issues.

Name of the position(s) and/or committee(s)
Other, please specify (Executive Vice President & General Counsel)

Responsibility
Both assessing and managing water-related risks and opportunities

Frequency of reporting to the board on water-related issues
Quarterly

Please explain
Entergy's Executive Vice President has the responsibility for oversight and implementation of Entergy's position, performance and advocacy associated with any material water issues. Additionally, the Executive Vice President & General Counsel has the responsibility of approving Entergy EMS Procedures and revisions as well as interpreting Entergy EMS Procedures, as needed.
Name of the position(s) and/or committee(s)
Other, please specify (Senior Vice President, Sustainable Development, Planning and Operations)

Responsibility
Both assessing and managing water-related risks and opportunities

Frequency of reporting to the board on water-related issues
Quarterly

Please explain
Entergy's SVP, Sustainable Development, Planning and Operations has the responsibility for oversight and implementation of Entergy's transition to a generation mix with a lower carbon footprint, which also results in a lower water footprint.

Name of the position(s) and/or committee(s)
Other, please specify (Vice President, Sustainability & Environmental Policy)

Responsibility
Both assessing and managing water-related risks and opportunities

Frequency of reporting to the board on water-related issues
As important matters arise

Please explain
Entergy’s Vice President of Sustainability & Environmental Policy has the responsibility for oversight and implementation of Entergy's position, performance and advocacy associated with any material water issues.

Name of the position(s) and/or committee(s)
Other, please specify (Chairman)

Responsibility
Both assessing and managing water-related risks and opportunities

Frequency of reporting to the board on water-related issues
Quarterly

Please explain
Entergy’s Chairman has the overarching responsibility for managing risk including water management risk, executing strategy that positions the company to prosper in a constrained economy and ensuring actions are taken to meet Entergy's environmental strategy.

Name of the position(s) and/or committee(s)
Other, please specify (Director, Corporate Risk)

Responsibility
Both assessing and managing water-related risks and opportunities
Frequency of reporting to the board on water-related issues

As important matters arise

Please explain

Water permitting requirements, stormwater impacts, surface water impacts, wetlands impacts, and other water-related risks are identified on a corporate level and for significant capital projects and transactions. The Director, Corporate Risk’s capital expenditure risk review process includes an assessment of water-related and other environmental risks. Water issues are included in a scenario analysis Entergy conducts as part of its overall due diligence review and analysis of any expansion, acquisition, new project, or investment. Depending on the project, scenario analysis may include water availability issues, quality issues, intake concerns, wetlands issues, and water-related biodiversity impacts. Desktop evaluations are conducted using ArcGIS to determine the water impacts of transmission construction projects in preliminary planning phases.

W6.4

(W6.4) Do you provide incentives to C-suite employees or board members for the management of water-related issues?

<table>
<thead>
<tr>
<th>Provide incentives for management of water-related issues</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>Climate and environmental risk management protect Entergy’s physical assets, financial performance, and total shareholder return. Entergy’s compensation programs for executive officers are based on a philosophy of pay-for-performance, embodied in the design of our annual and long-term incentive plans. Our annual and long-term incentive compensation awards reward the achievement of shareholder value using metrics deemed by the Board to be consistent with the overall goals and strategic direction that the Board has set for the company. Achievement of the Company’s sustainability objectives influences long-term shareholder value and, correspondingly, the equity awarded each year under the long-term incentive programs. Within the applicable business units, individual awards under our annual incentive plan are directly tied to various sustainability business objectives, including performance under the company’s climate commitment and goals.</td>
</tr>
</tbody>
</table>

W6.4a

(W6.4a) What incentives are provided to C-suite employees or board members for the management of water-related issues (do not include the names of individuals)?
<table>
<thead>
<tr>
<th>Role(s) entitled to Incentive</th>
<th>Performance indicator</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monetary reward
Corporate executive team
Chief Executive Officer (CEO)
Other, please specify (Senior VP, Sustainable Development, Planning and Operations)</td>
<td>Other, please specify (Entergy is not currently independently incentivizing water-related issues using performance indicators. Entergy does provide incentives for effectively managing environmental risks, in which water-related issues are encompassed.)</td>
<td>Our annual and long-term incentive compensation elements incentivize and reward the achievement of business objectives. Entergy believes that effectively managing environmental risks is vital for creating sustainable shareholder value. Continuous ESG stakeholder engagement and mitigation of climate risks (including water risks) helps achieve performance results while enhancing our ability to maintain low rates and deliver clean, reliable power. These are not direct and separate compensation incentives. ESG is integrated into our compensation system as a critical component of total shareholder return and overall corporate governance and risk management. Entergy is not currently independently incentivizing water-related issues using performance indicators. In 2020, Entergy is piloting a comprehensive performance dashboard that will assess water-related issues using performance indicators. The dashboard will be focused on creating value for the company's four key stakeholders. Depending on the outcome of the 2020 pilot, this process may be adopted as a permanent part of the company's method for calculating annual financial incentives for all employees.</td>
</tr>
<tr>
<td>Non-monetary reward
Other, please specify (All Employees)</td>
<td>Reduction of water withdrawals
Reduction in consumption volumes
Improvements in efficiency - direct operations
Improvements in efficiency - supply chain
Improvements in waste water quality - direct operations
Implementation of employee awareness campaign or training program
Increased access to workplace WASH
Implementation of water-related community project</td>
<td>Entergy recognizes employees for participation in water-related activities, including water advocacy, communicating water-related issues, and involvement in water-related volunteerism.</td>
</tr>
</tbody>
</table>
W6.5

(W6.5) Do you engage in activities that could either directly or indirectly influence public policy on water through any of the following?
Yes, direct engagement with policy makers
Yes, trade associations
Yes, funding research organizations

W6.5a

(W6.5a) What processes do you have in place to ensure that all of your direct and indirect activities seeking to influence policy are consistent with your water policy/water commitments?

Corporate environmental requirements and guidelines govern Entergy's business functions. Adopted by the Board of Directors in 2002, Entergy's Environmental Vision Statement details the company's commitment to operating its business in ways that preserve and protect our environment. Along with the company's aspirations, the statement guides business policies and decisions. Entergy also has established a Safety, Health & Environmental (SH&E) Policy and management system that defines its overall governance structure, roles and responsibilities, and management system requirements. Should an entity engaged or supported by Entergy hold a position on water that is not consistent with our water policies, an internal discussion takes place to determine what action to take, after which Entergy's stance on the matter is communicated to the entity.

W6.6

(W6.6) Did your organization include information about its response to water-related risks in its most recent mainstream financial report?
Yes (you may attach the report - this is optional)

W7. Business strategy

W7.1
W7.1 Are water-related issues integrated into any aspects of your long-term strategic business plan, and if so how?

<table>
<thead>
<tr>
<th>Are water-related issues integrated?</th>
<th>Long-term time horizon (years)</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes, water-related issues are integrated</td>
<td>5-10</td>
<td>Entergy's Fleet Portfolio Transformation Strategy is currently in progress; the company has made significant progress and has added 3,928 MW of closed cycle cooling CCGT capacity since 2005. Assuming 100% capacity factor, this transformation strategy would result in a withdrawal reduction of more than 800 billion gallons of water.</td>
</tr>
</tbody>
</table>

Entergy's business functions have developed a management system that describes and defines its long-term strategy, compliance requirements, risk assessment procedures, objective-setting process, programs/procedures, self-assessment mechanisms and senior management review requirements. Impacts on both water quality and quantity are evaluated as a part of this process. Senior Management reviews water issues quarterly at Environmental Leadership Team meetings, managing and monitoring the path towards achieving long term objectives.

| Are water-related issues integrated? | 5-10 | Entergy's ERM process and investment approval process (IAP) are companywide processes used to identify material issues and strategic imperatives to analyse and prioritize environmental, weather and climate risks and opportunities for all businesses. The scope of the analysis includes evaluation of climate change proposals, adaptation issues, customer impacts, physical risks, economic impacts and litigation issues. Entergy's IAP requires projects of sufficient materiality to include scenarios reflecting the cost and/or benefits in regard to avoiding damage from extreme weather and other water related issues. |

| Are water-related issues integrated? | 5-10 | **W7.2** What is the trend in your organization's water-related capital expenditure (CAPEX) and operating expenditure (OPEX) for the reporting year, and the anticipated trend for the next reporting year? |

Row 1

- Water-related CAPEX (+/- % change)
- Anticipated forward trend for CAPEX (+/- % change)
- Water-related OPEX (+/- % change)
- Anticipated forward trend for OPEX (+/- % change)

W7.3
(W7.3) Does your organization use climate-related scenario analysis to inform its business strategy?

<table>
<thead>
<tr>
<th>Use of climate-related scenario analysis</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>Physical risks from today's climate and future climate change include increases in sea level (from both sea level rise and subsidence), wind and storm surge damages, wetland and barrier island erosion, risks of flooding and changes in weather conditions, such as changes in precipitation, average temperatures, and potential increased impacts of extreme weather conditions or storms. To respond to this, Entergy made improvements to our transmission system totalling about $300 million. Today, we are investing approximately $1 billion annually to improve our transmission infrastructure and reliability. In 2019 alone we completed projects at a cost of more than $1 billion dollars that included facilities designed to better withstand storms. Entergy evaluates hardening strategies from a customer perspective, weighing the benefits of fewer and shorter outages against the high costs of hardening the system which our customers ultimately must pay for.</td>
</tr>
</tbody>
</table>

W7.3a

(W7.3a) Has your organization identified any water-related outcomes from your climate-related scenario analysis?
Yes

W7.3b

(W7.3b) What water-related outcomes were identified from the use of climate-related scenario analysis, and what was your organization's response?

<table>
<thead>
<tr>
<th>Climate-related scenarios and models applied</th>
<th>Description of possible water-related outcomes</th>
<th>Company response to possible water-related outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Climate-related scenarios and models applied</td>
<td>Description of possible water-related outcomes</td>
<td>Company response to possible water-related outcomes</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Row 1</td>
<td>IEA Sustainable Development Scenario</td>
<td>Reduced water availability and changes to precipitation patterns due to climate change.</td>
</tr>
</tbody>
</table>

W7.4

(W7.4) Does your company use an internal price on water?

Row 1

Does your company use an internal price on water?

No, and we do not anticipate doing so within the next two years

Please explain

There is no plan in place yet to be pursued by Entergy.

W8. Targets

W8.1

(W8.1) Describe your approach to setting and monitoring water-related targets and/or goals.
<table>
<thead>
<tr>
<th>Row</th>
<th>Business level specific targets and/or goals</th>
<th>Activity level specific targets and/or goals</th>
<th>Site/facility specific targets and/or goals</th>
<th>Country level targets and/or goals</th>
<th>Approach to setting and monitoring targets and/or goals</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Goals are monitored at the corporate level</td>
<td>In 2020, Entergy kicked off a water stewardship initiative to develop recommended goals for water resource stewardship for our owned and operated generating fleet. The initiative includes evaluating existing water usage metrics, benchmarking peer utility metrics, and developing plans for water optimization studies. Reducing our water use and conserving water resources are top sustainability priorities at Entergy, and this translates to our water related goals. We look for opportunities to reduce water use in our operations while evaluating water availability and ensuring compliance with state and local permits and requirements. At the Lewis Creek Plant in Willis, Texas, a groundwater-constrained area, we worked with the water conservation district to optimize water use, gaining best practices that helped us use water wisely throughout our operations. By setting a site-specific target and monitoring our progress, Entergy was able to exceed its water conservation goal of 30 percent water withdrawal by 2016—a level that we have been able to maintain throughout 2020.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

W8.1b

(W8.1b) Provide details of your water goal(s) that are monitored at the corporate level and the progress made.

Goal

Other, please specify (Fleet Transformation)

Level

Business activity

Motivation

Water stewardship

Description of goal

Reducing our water use and conserving water resources are top sustainability priorities at Entergy. Entergy's Fleet Portfolio Transformation Strategy is in progress. This Fleet modernization will minimize Entergy's impact on water, as newer plants withdraw significantly less water than our legacy units. Over the past 14 years, Entergy has implemented this goal
across their business level by adding approximately 6,000 MW of clean, highly efficient combined-cycle gas turbine generation and allowed the deactivation of over 5,200 MW of older, less efficient gas or oil units.

Baseline year
2000

Start year
2005

End year
2030

Progress
Assuming a 100% capacity factor, this transformation strategy would result in a reduction of more than 800 billion gallons of water per year. Indicators used to track progress towards this goal are the following; the increased number of megawatts generated from the newer plants and the number of legacy units that have been retired and replaced with the more efficient newer plants. Over the past 14 years, we have added approximately 6,000 MW of clean, highly efficient combined-cycle gas turbine generation and allowed the deactivation of over 5,200 MW of older, less efficient gas or oil units.

Goal
Other, please specify (Nuclear Uprates)

Level
Business activity

Motivation
Water stewardship

Description of goal
Investing in our utility nuclear generation assets to maximize their output and ensure safe, reliable operation preserves the long-term benefits of the plants. It is an integral part of our environmental commitment to deliver low-emission energy to our customers while decreasing the amount of water withdrawn as part of our operational processes. Entergy has implemented this goal across our business by investing in nuclear unit uprates that increase generating capacity without requiring an incremental increase in water withdrawal requirements.

Baseline year

Start year
2012

End year
2030

Progress
Indicators used to track progress towards this goal are the following: the increased generation capacity in megawatts that resulted from investing in nuclear unit uprates and the resultant decrease in the amount of water withdrawn. During 2012, Entergy completed a 178 MW capacity uprate at Grand Gulf Nuclear Station, bringing the total uprates since 2001 to 700 MW of new capacity that requires little or no incremental added cooling water. Assuming a 100% capacity factor, this strategy would result in a withdrawal reduction of large quantities of water per year.

Goal
Other, please specify (Energy Efficiency)

Level
Company-wide

Motivation
Other, please specify (Sales of new products/services)

Description of goal
The Entergy utility companies are committed to pursuing cost-effective Demand-side management (DSM) and have worked towards implementing this goal companywide by identifying 990 MW of peak demand reduction that can be achieved through 2031 as a part of its Integrated Resources Plans. This goal is vital to Entergy as reducing peak demand allows Entergy to provide a secure, economical, and reliable electric service for its many customers.

Baseline year

Start year
2002

End year
2031

Progress
Indicators used to track progress towards this goal are the following: the increased megawatts associated with peak load reduction and the resultant increase in megawatt-hours of cumulative energy savings. Significant progress has been made across regulated utilities that operate in multiple states. Entergy has invested more than $600 million to deliver nearly 900 megawatts of peak load reduction and 2.7 million megawatt-hours of cumulative energy savings, resulting in savings of almost 23 billion gallons of water per year. Currently, 30 energy efficiency and DSM programs are underway at Entergy.

W9. Verification

https://www.cdp.net/enformatted_responses/responses?campaign_id=74241104&discloser_id=892833&locale=en&organization_name=Entergy+
W9.1

(W9.1) Do you verify any other water information reported in your CDP disclosure (not already covered by W5.1a)?
Yes

W9.1a

(W9.1a) Which data points within your CDP disclosure have been verified, and which standards were used?

<table>
<thead>
<tr>
<th>Disclosure module</th>
<th>Data verified</th>
<th>Verification standard</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>W1 Current state</td>
<td>Water withdrawals- total volumes</td>
<td>Other, please specify (Pump curves and run times are used to quantify this.)</td>
<td>Methodology explained.</td>
</tr>
<tr>
<td>W1 Current state</td>
<td>Water withdrawals- volume by sources</td>
<td>Other, please specify (Pump curves and run times are used to quantify this.)</td>
<td>Methodology explained.</td>
</tr>
<tr>
<td>W1 Current state</td>
<td>Water discharges- total volumes</td>
<td>Other, please specify (Federal and State NPDES Permit)</td>
<td>Standards and methodologies as contained in Federal and State NPDES Permits.</td>
</tr>
<tr>
<td>W1 Current state</td>
<td>Water discharges- volume by destination</td>
<td>Other, please specify (Federal and State NPDES Permit)</td>
<td>Standards and methodologies as contained in Federal and State NPDES Permits.</td>
</tr>
<tr>
<td>W1 Current state</td>
<td>Water discharge quality data-quality by standard effluent parameters</td>
<td>Other, please specify (Federal and State NPDES Permit)</td>
<td>Standards and methodologies as contained in Federal and State NPDES Permits.</td>
</tr>
</tbody>
</table>

W10. Sign off

W-FI

(W-FI) Use this field to provide any additional information or context that you feel is relevant to your organization’s response. Please note that this field is optional and is not scored.
Protecting the environment is one of the many ways Entergy powers life and creates sustainable value for our stakeholders — customers, employees, communities, and owners — and this has been true for many years. Water is a vital natural resource that is critical to Entergy’s business operations. Entergy’s facilities use water for cooling, boiler make-up, sanitary uses, potable supply, and many other uses. Risks to water supply issues are mitigated by using water-saving technologies, monitoring available supplies, and minimizing our water withdrawal in water-stressed areas. Additionally, water is recycled in some of our cooling systems, and we operate one air-cooled combined-cycle gas unit. Water quality is also continuously protected and monitored through robust permitting and compliance programs.

W10.1

(W10.1) Provide details for the person that has signed off (approved) your CDP water response.

<table>
<thead>
<tr>
<th>Job title</th>
<th>Corresponding job category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Executive Vice President and General Counsel</td>
<td>Other C-Suite Officer</td>
</tr>
</tbody>
</table>

W10.2

(W10.2) Please indicate whether your organization agrees for CDP to transfer your publicly disclosed data on your impact and risk response strategies to the CEO Water Mandate’s Water Action Hub [applies only to W2.1a (response to impacts), W4.2 and W4.2a (response to risks)].

No