Welcome to your CDP Water Security Questionnaire 2022

W0. Introduction

W0.1

(W0.1) Give a general description of and introduction to your organization.

Entergy Corporation (NYSE: ETR) is an integrated energy company engaged in electric power production, transmission, and retail distribution operations. Entergy delivers electricity to 3 million utility customers in Arkansas, Louisiana, Mississippi, and Texas. Entergy owns and operates one of the cleanest large-scale U.S. power generating fleets with over 24,000 megawatts of electric generating capacity, including over 5,000 megawatts of nuclear power. Headquartered in New Orleans, Louisiana, Entergy has annual revenues of over $11 billion and approximately 12,500 employees. Led by our board of directors, Entergy maintains a forward-looking environmental management policy that extends beyond a dedication to environmental compliance. Our policy commits us, among other things, to practice sustainability in all that we do, not only through our environmentally responsible behaviour, but also through our support of initiatives that promote local, industry, and global prosperity.

Entergy has a strong track record related to water compliance, efficiency, recycling, and optimization. The company has identified Clean Water and Sanitation as one of the United Nations Sustainable Development Goals (SDG) that we can influence. This SDG (#6) focuses on addressing water availability while also managing flood risk, minimizing our water use, and ensuring our compliance with federal, state, and local regulations.

Water is essential to life but can be a risk during extreme weather events. Entergy addresses water availability while also managing flood issues. We look for opportunities to reduce water use in our operations while evaluating water availability and ensuring compliance with federal, state, and local permits and requirements. Fleet modernization minimizes our impact on water as newer plants withdraw significantly less water than our legacy units. We also evaluate water risks from flooding as sea-level rises, coastal erosion, and subsidence in our coastal service area impact our region.

Public reporting of environmental, social, and governance metrics has become increasingly important to our stakeholders. Entergy collects environmental, social and governance (ESG) metrics and supporting narratives and discloses them annually in its Integrated Report, Performance Data Table, the Entergy Statistical Report, and Investor Guide, the EEI ESG and
American Gas Association templates, and Global Reporting Initiative and Sustainability Accounting Standards Board mapping. These disclosures contain several water-related metrics. These documents are available here - https://www.entergy.com/sustainability/disclosures/
https://www.entergy.com/investor_relations/annual_publications/

Additionally, for 20 consecutive years, the Dow Jones Sustainability Index (DJSI) has included Entergy on either its World or North America index or both. In 2021, we earned perfect scores in water-related risks, materiality, environmental reporting, and social reporting.

Forward-Looking Information: Entergy’s statements concerning its environmental plans, goals, beliefs, and expectations, including statements regarding its greenhouse gas reduction goals, strategies, and actions it may take to achieve such goals, statements regarding potential technological advances, and other statements of Entergy’s plans, beliefs, or expectations included in this presentation are “forward-looking statements” which apply only as of the dates indicated. Forward-looking statements are subject to a number of risks, uncertainties, and other factors that could cause actual results to differ materially from those expressed or implied in such forward-looking statements, including, among other things, uncertainties associated with regulatory proceedings and other cost recovery mechanisms, operation and relicensing of nuclear facilities, major storms and other catastrophic events, risks associated with executing on our business strategies, effects of changes in laws, regulations or policies, the effects of technological change, including the costs, pace of development, and commercialization of new and emerging technologies, uncertainties and other factors discussed in Entergy’s most recent Annual Report on Form 10-K and subsequent reports and filings made under the Securities Exchange Act of 1934.

Entergy’s interpretation of Equity share for energy resource and greenhouse gas inventory purposes is inclusive of firm contracts and market purchases.

W-EU0.1a

(W-EU0.1a) Which activities in the electric utilities sector does your organization engage in?

- Electricity generation
- Transmission
- Distribution
- Other, please specify

1.) Gas storage, transmission and distribution 2.) Smart grids/ demand response 3.) Battery storage 4.) Micro Grids

W-EU0.1b

(W-EU0.1b) For your electricity generation activities, provide details of your nameplate capacity and the generation for each technology.

<table>
<thead>
<tr>
<th>Nameplate capacity (MW)</th>
<th>% of total nameplate capacity</th>
<th>Gross electricity generation (GWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12G</td>
<td>0.01</td>
<td>10.5</td>
</tr>
<tr>
<td>30G</td>
<td>0.05</td>
<td>30.5</td>
</tr>
<tr>
<td>50G</td>
<td>0.09</td>
<td>50.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fuel Type</th>
<th>2021</th>
<th>2022</th>
<th>2023</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coal – hard</td>
<td>2,218</td>
<td>8.71</td>
<td>7,761</td>
</tr>
<tr>
<td>Lignite</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Oil</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gas</td>
<td>17,146</td>
<td>67.33</td>
<td>68,145</td>
</tr>
<tr>
<td>Biomass</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Waste (non-biomass)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Nuclear</td>
<td>5,999</td>
<td>23.56</td>
<td>51,236</td>
</tr>
<tr>
<td>Fossil-fuel plants fitted with carbon capture and storage</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Geothermal</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Hydropower</td>
<td>73</td>
<td>0.29</td>
<td>1,214</td>
</tr>
<tr>
<td>Wind</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Solar</td>
<td>29</td>
<td>0.11</td>
<td>539</td>
</tr>
<tr>
<td>Marine</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Other renewable</td>
<td>29</td>
<td>0.11</td>
<td>0</td>
</tr>
<tr>
<td>Other non-renewable</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>25,465</td>
<td>100</td>
<td>128,895</td>
</tr>
</tbody>
</table>

W0.2

(W0.2) State the start and end date of the year for which you are reporting data.

<table>
<thead>
<tr>
<th>Reporting year</th>
<th>Start date</th>
<th>End date</th>
</tr>
</thead>
<tbody>
<tr>
<td>January 1, 2021</td>
<td>December 31, 2021</td>
<td></td>
</tr>
</tbody>
</table>

W0.3

(W0.3) Select the countries/areas in which you operate.

United States of America

W0.4

(W0.4) Select the currency used for all financial information disclosed throughout your response.

USD

W0.5

(W0.5) Select the option that best describes the reporting boundary for companies, entities, or groups for which water impacts on your business are being reported.

Companies, entities or groups over which financial control is exercised
W0.6

(W0.6) Within this boundary, are there any geographies, facilities, water aspects, or other exclusions from your disclosure?

Yes

W0.6a

(W0.6a) Please report the exclusions.

<table>
<thead>
<tr>
<th>Exclusion</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commercial office buildings</td>
<td>The quantity of water used in these office buildings is insignificant compared to the amount of water used for Entergy's power generation operations. Additionally, the water utilized at these office buildings is not supplied from sources susceptible to shortages. Entergy does not monitor water usage at its office buildings.</td>
</tr>
</tbody>
</table>

W0.7

(W0.7) Does your organization have an ISIN code or another unique identifier (e.g., Ticker, CUSIP, etc.)?

<table>
<thead>
<tr>
<th>Indicate whether you are able to provide a unique identifier for your organization.</th>
<th>Provide your unique identifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes, an ISIN code</td>
<td>US29364G1031</td>
</tr>
</tbody>
</table>

W1. Current state

W1.1

(W1.1) Rate the importance (current and future) of water quality and water quantity to the success of your business.

<table>
<thead>
<tr>
<th></th>
<th>Direct use importance rating</th>
<th>Indirect use importance rating</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sufficient amounts of good quality freshwater available for use</td>
<td>Vital</td>
<td>Vital</td>
<td>Direct Use - Entergy produces electricity from steam electric power plants that use large amounts of freshwater. 80.60 % of Entergy’s power generation fleet utilizes freshwater for cooling, boiler make-up water and house service water needs. The water quantity, quality, biological diversity, and ambient temperatures for each freshwater body are all factors that are vitally important for Entergy's current and future power plant operations.</td>
</tr>
</tbody>
</table>
Indirect Use - Entergy’s suppliers use freshwater to produce various products that are important to company operations. An interruption in supply of freshwater could result in a disruption in product availability. Future water dependency will likely not differ in Entergy’s direct and indirect operations, as this has been the trend observed over recent years.

Sufficient amounts of recycled, brackish and/or produced water available for use

Direct Use

- 19.40% of Entergy’s power generation fleet utilizes brackish water for cooling, boiler make-up water and house service water needs. The water quantity, quality, biological diversity, and ambient temperatures for each of these sources are all factors that are important for Entergy’s current and future power plant operations.

Indirect Use - Entergy’s suppliers use brackish water to produce various products that are important to company operations. An interruption in supply of these water sources could result in a disruption in product availability. Future water dependency likely will not differ in Entergy’s direct and indirect operations, as this has been the trend observed over recent years.

W1.2

(W1.2) Across all your operations, what proportion of the following water aspects are regularly measured and monitored?

<table>
<thead>
<tr>
<th>% of sites/facilities/operations</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water withdrawals – total volumes</td>
<td>Entergy monitors 100% of its sites which are owned and operated by Entergy for water withdrawals. The volume of water withdrawals at the power generation plants is measured either by direct metering or, in many cases, estimated daily, monthly, quarterly, or annually using water pump capacity and run time. Other company locations (service centers, office buildings, etc.) are supplied primarily by municipal water sources.</td>
</tr>
<tr>
<td>Water withdrawals – volumes by source</td>
<td>100%</td>
</tr>
<tr>
<td>Water withdrawals quality</td>
<td>100%</td>
</tr>
<tr>
<td>Water discharges – total volumes</td>
<td>100%</td>
</tr>
<tr>
<td>Water discharges – volumes by destination</td>
<td>100%</td>
</tr>
</tbody>
</table>
Entergy monitors 100% of its sites which are owned and operated by Entergy for water discharges. Water discharges from the power generation plants are permitted by the appropriate regulatory agency. These permits identify the receiving water body, require an estimate of discharge flow, identify the treatment method, and require monitoring of various water quality parameters. All this information is reported to the permitting agency regularly, which depending on the permit, may be required monthly, quarterly, or annually. Across our operations, Entergy protects water resources by maintaining a compliance rate with state and federal water pollution control permit requirements of at least 99.9% from year to year. Other company locations (service centers, office buildings, etc.) are serviced primarily by municipal treatment systems.
| Water discharge quality – temperature | 100% | Entergy monitors 100% of its sites which are owned and operated by Entergy for water discharges. Water discharges from the power generation plants are permitted by the appropriate regulatory agency. These permits identify the receiving water body, require an estimate of discharge flow, identify the treatment method, and require monitoring of various water quality parameters- including temperature. All this information is reported to the permitting agency as required by the permitting agency based on the water body characteristics. Depending on the permit, this may be required monthly, quarterly, or annually. Across our operations, Entergy protects water resources by maintaining a compliance rate with state and federal water pollution control permit requirements of at least 99.9% from year to year. Other company locations (service centers, office buildings, etc.) are serviced primarily by municipal treatment systems. |
| Water consumption – total volume | 100% | Entergy monitors 100% of its sites which are owned and operated by Entergy for water withdrawal and discharge as described previously and calculates consumption from the difference of these two monitored values. Water consumption at the power generation plants occurs primarily through evaporative losses during the cooling process. Entergy estimates these losses daily based on the technology employed at each power plant using industry loss factors. Water consumption at other company locations (service centers, office buildings, etc.) is only a small fraction of the evaporative losses described above. |
| Water recycled/reused | 100% | Entergy monitors 100% of its recycled water. Entergy recycles water in some of our cooling systems and operates one air-cooled combined-cycle gas unit. Recycled water quantities being utilized for these operations are monitored daily. |
The provision of fully-functioning, safely managed WASH services to all workers

<table>
<thead>
<tr>
<th>% of sites/facilities/operations measured and monitored</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>100%</td>
<td>Entergy monitors 100% of its service water. All of Entergy's workers are provided with clean water for drinking, cooking, and cleaning purposes; adequate facilities for excreta purposes, solid waste management, and drainage are provided and monitored by public water systems providers. For those facilities that have private water systems, we have groundwater or surface water withdrawal limits.</td>
</tr>
</tbody>
</table>

W-EU1.2a

(W-EU1.2a) For your hydropower operations, what proportion of the following water aspects are regularly measured and monitored?

<table>
<thead>
<tr>
<th>Fulfilment of downstream environmental flows</th>
<th>100%</th>
<th>Entergy’s hydropower facilities monitor 100% of their downstream environmental flows in order to prove compliance with minimum flow requirements in place for fisheries and recreational purposes.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sediment loading</td>
<td>100%</td>
<td>Construction management processes, such as utilizing above-grade land clearing processes in rights-of-way development, have reduced siltation and erosion arising from the construction activities and the subsequent sediment deposition in jurisdictional waters of the U.S across Entergy’s operations. Entergy employs best management practices to manage and monitor runoff from permitted lake bed disturbances such as seawalls, dredges, and excavations.</td>
</tr>
<tr>
<td>Other, please specify</td>
<td>100%</td>
<td>Oil and grease concentrations and pH are monitored at all Entergy hydropower facilities to ensure compliance with their NPDES permitting requirements.</td>
</tr>
</tbody>
</table>

W1.2b

(W1.2b) What are the total volumes of water withdrawn, discharged, and consumed across all your operations, and how do these volumes compare to the previous reporting year?
<table>
<thead>
<tr>
<th>Volume (megaliters/year)</th>
<th>Comparison with previous reporting year</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total withdrawals</td>
<td>Lower</td>
<td>During 2021, the total water withdrawn by Entergy facilities was lower than the quantity withdrawn during 2020. Entergy facilities withdrew 7,948,242 megalitres of water during 2020. Hot Spring, Lake Catherine, Waterford 1&2, Little Gypsy, Baxter Wilson, Gerald Andrus, Ouachita, Perryville, and Indian Point reported lower to much lower water withdrawals during 2020. Yearly changes less than 5 percent were considered "about the same." Changes between 5% and 25% were considered "higher" or "lower." Year-to-year changes greater than 25% were considered "much higher"/"much lower." Future volumes are not expected to vary greatly based on generation projections.</td>
</tr>
<tr>
<td>Total discharges</td>
<td>Lower</td>
<td>During 2021, the total water discharged by Entergy facilities was lower than the quantity discharged during 2020. Entergy facilities discharged 7,803,232 megalitres of water during 2020. Lake Catherine, Waterford 1&2, J. Wayne Leonard, Little Gypsy, Hinds, Baxter Wilson, Gerald Andrus, Perryville, and Indian Point reported lower to much lower water discharge during 2020. Yearly changes less than 5 percent were considered "about the same." Changes between 5% and 25% were considered "higher" or "lower." Year-to-year changes greater than 25% were considered "much higher"/"much lower." Future volumes are not expected to vary greatly based on generation projections.</td>
</tr>
<tr>
<td>Total consumption</td>
<td>Much higher</td>
<td>During 2021, the total water consumed by Entergy facilities was higher than the quantity consumed during 2020. Entergy facilities consumed 145,010 megaliters of water during 2020. White Bluff, Lake Charles, J. Wayne Leonard, Hinds, & Baxter Wilson reported much higher water consumption values during 2021. Power production at many of Entergy facilities increased during 2021 resulting in more water being consumed. This is primarily attributed to</td>
</tr>
</tbody>
</table>
Entergy Corporation

CDP Water Security Questionnaire 2022 Thursday, August 11, 2022

Increased electrical demand from Entergy customers in 2021 vs 2020. Changes between 5% and 25% were considered "higher" or "lower." Year-to-year changes greater than 25% were considered "much higher"/"much lower." Future volumes are not expected to vary greatly based on generation projections.

W1.2d

(W1.2d) Indicate whether water is withdrawn from areas with water stress and provide the proportion.

<table>
<thead>
<tr>
<th>Withdrawals are from areas with water stress</th>
<th>% withdrawn from areas with water stress</th>
<th>Comparison with previous reporting year</th>
<th>Identification tool</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>Less than 1%</td>
<td>About the same</td>
<td>WRI Aqueduct</td>
<td>The Lewis Creek Power Plant and Montgomery County Power Station ("MCPS") in Montgomery County, Texas, are the only Entergy power plants that operate in a water-constrained area. Even this area is not classified as water-stressed as defined by sustainability analyst RobecoSAM and the DJSI; however, the facility is in Montgomery County, Texas, in the Lone Star Groundwater Conservation District ("LSGCD"), an area identified as water-constrained due to a current water use exceeding the local aquifer’s sustainable yield by ~20% (25 billion gallons use vs. 21 billion gallons yield). The World Resource’s Aqueduct water risk atlas also notes that this area is categorized as medium to high risk based on physical quantity, quality, regulatory and reputational risk categories. Entergy undertook a</td>
</tr>
</tbody>
</table>

Row 1

Yes

Less than 1%

About the same

WRI Aqueduct

The Lewis Creek Power Plant and Montgomery County Power Station ("MCPS") in Montgomery County, Texas, are the only Entergy power plants that operate in a water-constrained area. Even this area is not classified as water-stressed as defined by sustainability analyst RobecoSAM and the DJSI; however, the facility is in Montgomery County, Texas, in the Lone Star Groundwater Conservation District ("LSGCD"), an area identified as water-constrained due to a current water use exceeding the local aquifer’s sustainable yield by ~20% (25 billion gallons use vs. 21 billion gallons yield). The World Resource’s Aqueduct water risk atlas also notes that this area is categorized as medium to high risk based on physical quantity, quality, regulatory and reputational risk categories. Entergy undertook a
long-term strategic study of water availability for its Lewis Creek Plant. The study included analysis of the groundwater wells and water plant system. In conjunction with the LSGCD, the facility developed and executed a plan to reduce water withdrawal by 30% through process design changes. By working with the district to optimize water use and leveraging best practices, Lewis Creek continues to utilize at least 30% less water than originally permitted. Existing Lewis Creek units use a large non-public reservoir for cooling water and heat dissipation. This system is closed cycle except for necessary makeup due to evaporation, which is taken from surface water, not the stressed ground water resource. The Montgomery County Power Station began commercial operation in 2020. However, MCPS utilizes the existing Lewis Creek reservoir for cooling water and heat dissipation and does not use ground water resources.

W1.2h

(W1.2h) Provide total water withdrawal data by source.

<table>
<thead>
<tr>
<th>Relevance</th>
<th>Volume (megaliters/year)</th>
<th>Comparison with previous reporting year</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relevant</td>
<td>5,616,466</td>
<td>Lower</td>
<td>The total water withdrawal from fresh surface water sources during 2021 was 5,616,466 megaliters/year,</td>
</tr>
</tbody>
</table>
The total water withdrawal from brackish surface water sources during 2021 was 1,370,277 megaliters/year, and the value during 2020 was 1,483,756 megaliters/year. Since previous reporting of the 2020 total, the data for the Sabine generating station in Orange, TX was refined to differentiate the brackish water and the Third-Party Freshwater.

Third-party freshwater used at the Nels Download Station and Lake Charles Power Station was also subtracted from these totals. Entergy facilities reliant on freshwater experienced more efficient operations during 2021, withdrawing less water than 2020. Withdrawals were reduced in 2021 by adopting use once-through cooling systems by utilizing fresh surface water: Lake Catherine Unit 4, Waterford 1 & 2, Nine Mile Point, Baxter Wilson, and Gerald Andrus.

Entergy produces electricity from steam electric power plants that use large amounts of freshwater, as it directly impacts plant operations. Water withdrawal from this source is relevant to the company, as it directly impacts plant operations.
the brackish water used by Units 1, 3, and 4 and the Third-Party Freshwater used by Unit 5. Entergy’s power generation fleet utilizes brackish water for cooling, boiler make-up water, and house service water needs. Water withdrawal from this source is relevant to the company, as it directly impacts plant operations. Changes between 5% and 25% were considered "higher" or "lower." Year-to-year changes greater than 25% were considered "much higher"/"much lower." Future volumes are not expected to vary greatly based on generation projections.

<table>
<thead>
<tr>
<th>Groundwater – renewable</th>
<th>Relevant</th>
<th>64,604</th>
<th>Much higher</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The total water withdrawal from groundwater sources during 2021 was 64,604 megaliters/year, and the value during 2020 was 27,881 megaliters/year. The Grand Gulf Generating Nuclear Station, which is Entergy’s largest groundwater consumer, experienced an increase in production in 2021 which resulted in much higher withdrawal volumes during 2021. Water withdrawal from this source is relevant as it directly impacts Entergy’s plant operations. The previously-reported 2020 value was updated to reflect groundwater usage from the Nelson plant site which was inadvertently omitted from the 2020 response. Entergy produces electricity from
steam electric power plants that utilize water from this source. Changes between 5% & 25% were considered "higher" or "lower." Year-to-year changes greater than 25% were considered "much higher"/"much lower." Future volumes aren't expected to vary greatly based on generation projections; however, water usage is dependent on capacity factor in any given year.

<table>
<thead>
<tr>
<th>Groundwater – non-renewable</th>
<th>Not relevant</th>
<th>Entergy did not withdraw water from non-renewable groundwater sources during 2021, which was also the case for the previous year. Entergy does not expect future operations to change and for water to be withdrawn from this source.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Produced/Entrained water</td>
<td>Not relevant</td>
<td>Entergy did not withdraw water from produced/entrained sources during 2021, which was also the case for the previous year. Entergy does not expect future operations to change and for water to be withdrawn from this source.</td>
</tr>
<tr>
<td>Third party sources</td>
<td>Relevant 11,991 Higher</td>
<td>The total water withdrawal from third party sources during 2021 was 11,991 megaliters/year, and the value during 2020 was 10,994 megaliters/year. Three generating facilities utilize water purchased from the Sabine River Authority. In 2021, the Nelson Station and Lake Charles Power Station generated more power and</td>
</tr>
</tbody>
</table>
withdraw more water from this source than in 2020. Unit 5 at the Sabine generating station generated less power and used comparably less water from this source in 2021 vs 2020. Water withdrawal from this source is relevant as it directly impacts Entergy’s plant operations. Entergy produces electricity from steam electric power plants that utilize water from this source. Changes between 5% and 25% were considered "higher" or "lower." Year-to-year changes greater than 25% were considered "much higher"/"much lower." Future volumes are not expected to vary greatly based on generation projections.

<table>
<thead>
<tr>
<th>W1.2i</th>
<th>(W1.2i) Provide total water discharge data by destination.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Relevance</td>
</tr>
<tr>
<td>Fresh surface water</td>
<td>Relevant</td>
</tr>
<tr>
<td>Source</td>
<td>Relevance</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Brackish surface water/seawater</td>
<td>Relevant</td>
</tr>
<tr>
<td>Groundwater</td>
<td>Not relevant</td>
</tr>
<tr>
<td>Third-party destinations</td>
<td>Not relevant</td>
</tr>
</tbody>
</table>
(W1.2j) Within your direct operations, indicate the highest level(s) to which you treat your discharge.

<table>
<thead>
<tr>
<th>Relevance of treatment level to discharge</th>
<th>Volume (megaliters/year)</th>
<th>Comparison of treated volume with previous reporting year</th>
<th>% of your sites/facilities/operations this volume applies to</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tertiary treatment</td>
<td>Relevant</td>
<td>11,921.72</td>
<td>Lower</td>
<td>21-30</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Entergy facilities that performed tertiary treatment before discharging their water have been summed and represented as a percentage range in the previous column.</td>
</tr>
<tr>
<td>Secondary treatment</td>
<td>Relevant</td>
<td>6,640.37</td>
<td>Much higher</td>
<td>21-30</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Entergy facilities that performed secondary treatment before discharging their water have been summed and represented as a percentage range in the previous column.</td>
</tr>
<tr>
<td>Discharge Description</td>
<td>Relevance</td>
<td>Value (in USD)</td>
<td>Percentage Range</td>
<td>Note</td>
</tr>
<tr>
<td>--</td>
<td>-------------</td>
<td>----------------</td>
<td>------------------</td>
<td>--</td>
</tr>
<tr>
<td>Primary treatment only</td>
<td>Relevant</td>
<td>45,603.55</td>
<td>Higher</td>
<td>51-60</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Entergy facilities that performed primary treatment before discharging their water have been summed and represented as a percentage range in the previous column.</td>
</tr>
<tr>
<td>Discharge to the natural environment without treatment</td>
<td>Relevant</td>
<td>4,000,882.89</td>
<td>About the same</td>
<td>41-50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Entergy facilities that discharged to the natural environment without treatment have been summed and represented as a percentage range in the previous column.</td>
</tr>
<tr>
<td>Discharge to a third party without treatment</td>
<td>Not relevant</td>
<td></td>
<td></td>
<td>Entergy facilities did not discharge water to third-party destinations without treatment</td>
</tr>
</tbody>
</table>
during 2021, which was also the case for the previous year.

| Other | Relevant | 3,366.59 | Higher | 11-20 | Entergy facilities that utilized other treatment methods before discharging their water have been summed and represented as a percentage range in the previous column. |

W1.3

(W1.3) Provide a figure for your organization's total water withdrawal efficiency.

<table>
<thead>
<tr>
<th>Revenue</th>
<th>Total water withdrawal volume (megaliters)</th>
<th>Total water withdrawal efficiency</th>
<th>Anticipated forward trend</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row 1</td>
<td>11,742,896,000</td>
<td>7,061,924</td>
<td>1,662.8465556979 As Entergy works to increase its fleet of low water impact technologies, we expect to see this number gradually increase.</td>
</tr>
</tbody>
</table>

W-EU1.3

(W-EU1.3) Do you calculate water intensity for your electricity generation activities?

Yes
(W-EU1.3a) Provide the following intensity information associated with your electricity generation activities.

<table>
<thead>
<tr>
<th>Water intensity value (m3)</th>
<th>Numerator: water aspect</th>
<th>Denominator</th>
<th>Comparison with previous reporting year</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>57.53</td>
<td>Total water withdrawals</td>
<td>MWh</td>
<td>Lower</td>
<td>Water intensity value (m3) in 2021 was 57.53 m3/MWh (net), indicating a 10.43% decrease from last year. This value is determined based on total water withdrawals and total net generation from Entergy-owned and operated generating assets. Entergy tracks water intensity internally and works to reduce water intensity year by year. Based on future generation projections, Entergy’s water intensity is not expected to increase. Entergy plans to invest over $11 billion (as of February 2021) in capital over the next three years (2021E to 2023E) in generation assets and transmission and distribution infrastructure. Initiated in 2002, Entergy’s portfolio transformation strategy incorporates cleaner, more efficient generation sources, allowing for the retirement of older, less efficient legacy units. This proposed fleet modernization is expected to significantly reduce Entergy’s water withdrawal volumes, as these newer plants would withdraw significantly less water than our legacy units.</td>
</tr>
</tbody>
</table>

W1.4

(W1.4) Do you engage with your value chain on water-related issues?

Yes, our customers or other value chain partners

W1.4c

(W1.4c) What is your organization’s rationale and strategy for prioritizing engagements with customers or other partners in its value chain?
Protecting the environment is one of many ways Entergy powers life and creates sustainable value for our stakeholders — customers, employees, communities, and owners. For 20 consecutive years, the Dow Jones Sustainability Index has recognized our environmental and other sustainability actions by including Entergy on either its World or North America index or both. Since 2014 Entergy has scored a perfect 100 in the water-related risks category of the DJSI each year. Additionally, Entergy takes part in engaging and educating customers through our website by sharing our water management strategy. Entergy demonstrates its engagement with its customers in numerous ways. Entergy contributes to efforts related to water availability in the areas in which we operate. About ten years ago, we made improvements to our transmission system totaling about $300 million. Today, we are investing approximately $1 billion annually to improve our transmission infrastructure and reliability. In 2019 alone we completed projects at a cost of more than 1 billion dollars that included facilities designed to better withstand storms. Entergy evaluates hardening strategies from a customer perspective, weighing the benefits of fewer and shorter outages against the high costs of hardening the system, while maintaining affordable customer rates.

- We propose projects and strategies we believe are valuable for our customers.
- Our regulators provide guidance on the prudence of investments, including storm hardening strategies.
- Targeted programs that cost-effectively reduce the risks to reliability posed by extreme temperatures and major storms are good for all stakeholders.

Entergy measures customer satisfaction through Net Promoter Score among our residential customers. The metric provides an understanding of the overall health of our customer relationship, identify high level drivers and friction points. Entergy tracks metrics to understand customer areas and create strategic direction.

W2. Business impacts

W2.1

(W2.1) Has your organization experienced any detrimental water-related impacts?
No

W2.2

(W2.2) In the reporting year, was your organization subject to any fines, enforcement orders, and/or other penalties for water-related regulatory violations?
Yes, fines
W2.2a

(W2.2a) Provide the total number and financial value of all water-related fines.

Row 1

<table>
<thead>
<tr>
<th>Total number of fines</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total value of fines</td>
<td>500</td>
</tr>
<tr>
<td>% of total facilities/operations associated</td>
<td>4</td>
</tr>
<tr>
<td>Number of fines compared to previous reporting year</td>
<td>Much higher</td>
</tr>
<tr>
<td>Comment</td>
<td>There was an untimely submission for application for general water permit coverage in Louisiana. A $500 penalty was paid to LDEQ.</td>
</tr>
</tbody>
</table>

W2.2b

(W2.2b) Provide details for all significant fines, enforcement orders and/or other penalties for water-related regulatory violations in the reporting year, and your plans for resolving them.

<table>
<thead>
<tr>
<th>Type of penalty</th>
<th>Fine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Financial impact</td>
<td>500</td>
</tr>
<tr>
<td>Country/Area & River basin</td>
<td>United States of America</td>
</tr>
<tr>
<td>Other, please specify</td>
<td>Ouachita River</td>
</tr>
<tr>
<td>Type of incident</td>
<td>Failure to submit timely application.</td>
</tr>
<tr>
<td>Description of penalty, incident, regulatory violation, significance, and resolution</td>
<td>There was an untimely submission for application for general water permit coverage in Louisiana. A $500 penalty was paid to LDEQ.</td>
</tr>
</tbody>
</table>
W3. Procedures

W-EU3.1

(W-EU3.1) How does your organization identify and classify potential water pollutants associated with your business activities in the electric utilities sector that could have a detrimental impact on water ecosystems or human health?

Virtually all of Entergy’s discharges to water are controlled either by state-issued, federally enforceable permits issued under the National Pollutant Discharge Elimination System of the federal Clean Water Act or by similar state programs. Entergy facilities operate under approximately 40,000 specific water pollution control permit requirements. These permits have numeric water quality criteria which have been developed for specific parameters to protect aquatic life, human health and in some cases, wildlife from the deleterious effects of pollutants. Across our operations, Entergy protects water resources by maintaining a compliance rate with state and federal water pollution control permit requirements of at least 99.9% from year to year. Across Entergy’s value chain, impacts related to water vary. This is primarily due to specific state or location-based requirements. Hence policies and processes must adapt accordingly. However, all policies and processes must meet the Entergy Water Management Standard, which is part of the broader Entergy environmental management system. Entergy manages operational water-related risk compliance and planning issues primarily through PowerGen Environmental Group and the T&D Environmental Group. Secondarily, environmental compliance and regulatory issues are managed by the Water Peer Group and with state and federal trade associations. The Water Peer Group is comprised of water subject matter experts from each of the business units. The group examines water supply and discharge issues that impact Entergy’s operations, provides a forum for subject matter experts to discuss these issues, and provides coordination for path-forward strategies to influence these water issues and risks.

W-EU3.1a

(W-EU3.1a) Describe how your organization minimizes the adverse impacts of potential water pollutants associated with your activities in the electric utilities sector on water ecosystems or human health.

<table>
<thead>
<tr>
<th>Potential water pollutant</th>
<th>Description of water pollutant and potential impacts</th>
<th>Management procedures</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrocarbons</td>
<td>A hydrocarbon is a compound of hydrogen and carbon. These are typically the chief components in many types of fuels and products we use every day. They can come in the form of a gas, liquid, solid,</td>
<td>Compliance with effluent quality standards Measures to prevent spillage, leaching, and leakages</td>
<td>Hydrocarbon content in discharged water is closely monitored as required by state-issued, federally enforceable permits issued under the National Pollutant</td>
</tr>
</tbody>
</table>
or polymers. The exposure or injection of these substances can cause significant health risks. Direct skin contact can happen, causing local skin irritation and, rarely, leading to systemic disease. However, prolonged exposure can lead to tissue breakdown and superficial, partial thickness chemical burns. Severe, full-thickness chemical burns can lead to absorption and acute toxic systemic manifestations. Ingestion and inhalation/aspiration of hydrocarbons can also occur, which may signify disease and lead to systemic toxicity and morbidity and mortality. (Curtis J, Metheny E, Sergent SR. Hydrocarbon Toxicity. [Updated 2021 Jan 17]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2021 Jan-.)

Radiation	Radiation is the emitted energy coming from a radioactive source that is trying to achieve a stable state by shedding energy. Whereas a radionuclide is the actual contaminant. It comes from radioactive elements, natural and man-made, whose atoms are unstable. Radiation is measured in units called millirems. A millirem is a unit used to measure radiation dose in humans. For radiation to cause any measurable biological effect in human beings, most scientists agree that the exposure must reach about 25,000 millirems – in a single,
Community/stakeholder engagement	Compliance with effluent quality standards Measures to prevent spillage, leaching, and leakages Community/stakeholder engagement Emergency preparedness
Discharge Elimination System of the federal Clean Water Act or by similar state programs. To aid with emergency response in the case of hydrocarbon leakage or spill, the Spill Prevention, Control, and Countermeasure (SPCC) Plan maintained by Entergy facilities, helps facilities prevent oil spills, as well as control a spill should one occur. Stormwater Pollution Prevention Plans (SWPPP) are also maintained by the applicable facilities to outline the specific ways the facilities prevent contamination of water leaving the site as stormwater.	Entergy has comprehensive policies and procedures that govern the permitted release of radioactive effluents; the conduct of work involving radioactivity including spill prevention and mitigation; and the storage, containerization, and disposal of such material such that there will be no measurable impact to the environment. This includes the use of risk assessment guidance and challenge meetings

25
short-time exposure. Per the US EPA, exposure to very high levels of radiation can cause acute health effects such as skin burns and acute radiation syndrome (“radiation sickness”). It can also result in long-term health effects such as cancer and cardiovascular disease. https://perma.cc/KCC3-NNBB

when planning and conducting work that involves interaction with radioactive components, liquids, and gases. Additionally, a separate program of monitoring for the impact of nuclear power plant operational impacts on the community is conducted at each site. Lastly, the Nuclear Regulatory Commission conducts periodic inspections of the procedures processes and outcomes. Federal standards set and enforced by the Nuclear Regulatory Commission (NRC) require that workers at nuclear power plants receive no more than 5,000 millirems of radiation a year, which Entergy ensures strict compliance with. Emergencies at Entergy nuclear power plants are classified in four ways:

1) A Notification of Unusual Event is the least serious of the four emergency classifications. It means there is a problem that is being handled by plant workers. Strict federal rules require that several problems are reported as Unusual Events even though they pose no danger to the public.
They are reported to the Nuclear Regulatory Commission and to the local and state officials.

2) An Alert is an event that could affect plant safety. Even though there is still no danger to the public, local and state officials may set up emergency operation centers in case the situation at the plant gets worse.

3) A Site Area Emergency is an event that could possibly affect the public. Regulatory agencies would be notified, as required, and engaged for assistance.

4) A General Emergency is the most serious of the four emergency classifications. Local, state, and federal authorities would take action to protect the public. The sirens may be sounded to alert the public to listen to their radios for information and instructions. Designated radio stations and the Emergency Alert System would continue to give information and instructions. If necessary, some areas would be sheltered or evacuated.

Entergy maintains strict plans and protocols to
| **Thermal pollution** | Thermal water pollution is the degradation of water quality due to a change in ambient water temperature. Multiple issues occur concurrently when heated water is released to an aquatic ecosystem. The most immediate change is a decrease in dissolved oxygen levels and rise in pH. Warm water cannot hold as much dissolved oxygen as cold water, and organic matter decomposes faster in warmer temperatures. The increase in decomposed aqueous nutrient concentrations causes eutrophication, most commonly realized as algae blooms, which block sunlight for underlying aquatic plants. Additionally, rapidly heated water accelerates the metabolism of cold-blooded aquatic animals like fish, causing malnutrition due to insufficient food sources. Since the environment usually becomes more inhospitable to the area’s aquatic fauna, many species leave while more vulnerable species may die, changing the biodiversity of both the original and invaded locations. (Brandon C, Thermal Water Pollution from Nuclear Power Plants) | **Compliance with effluent quality standards**
Measures to prevent spillage, leaching, and leakages
Community/stakeholder engagement | Water temperature in discharged water is closely monitored as required by state-issued, federally enforceable permits under the National Pollutant Discharge Elimination System of the federal Clean Water Act or by similar state programs. At many facilities the temperature of the water is monitored continuously during discharge, with alarms on the system which indicate if the temperature of the discharge water raises to near permitted limits. Occasionally surface water temperature rises to a point where a facility will need to power down, showing a priority of the quality of discharge water over production. For example, in 2018, the Pilgrim Nuclear Station (since sold by Entergy) reduced power several times due to seawater approaching the 75-degree standard set by the Nuclear Regulatory Commission. In several instances, down powers to 40% were necessary. |
The estimated losses exceeded $8 million. In 2017, Pilgrim reduced power to 70% when water intake temperatures were too high. Additionally, in 2018, the Lake Catherine facility in Arkansas had to de-rate by approximately 50 MW for less than an hour due to increased water temperatures. Entergy monitors and responds to these situations as it would a physical interruption in the water supply. As we build our more modern facilities, the volume of water we discharge and any potential water thermal discharge issues are a factor in design considerations such as cooling towers, recirculation cooling ponds, and condenser sizing, each of which can mitigate this risk in appropriate circumstances. In 2019, Entergy also purchased its first air-cooled gas-fired generating unit at the Choctaw plant in Mississippi. The company continues to evaluate the operation of that unit.

| **Coal combustion residuals** | Per the US EPA website, Coal combustion residuals, commonly known as coal ash, are created when coal is burned by power plants to produce | Compliance with effluent quality standards | In June 2010, the EPA issued a proposed rule on coal combustion residuals (CCRs) that contained two primary |
electricity. Coal ash is one of the largest types of industrial waste generated in the United States. In 2012, 470 coal-fired electric utilities generated about 110 million tons of coal ash. Coal ash contains contaminants like mercury, cadmium and arsenic. Without proper management, these contaminants can pollute waterways, ground water, drinking water, and the air. If eaten, drunk or inhaled, these toxicants can cause cancer and nervous system impacts such as cognitive deficits, developmental delays and behavioral problems. They can also cause heart damage, lung disease, respiratory distress, kidney disease, reproductive problems, gastrointestinal illness, birth defects, and impaired bone growth in children.

Measures to prevent spillage, leaching, and leakages
Community/stakeholder engagement

regulatory options: (1) regulating CCRs destined for disposal in landfills or received (including stored) in surface impoundments as so-called “special wastes” under the hazardous waste program of Resource Conservation and Recovery Act (RCRA) Subtitle C; or (2) regulating CCRs destined for disposal in landfills or surface impoundments as non-hazardous wastes under Subtitle D of RCRA. Under both options, CCRs that are beneficially reused in certain processes would remain excluded from hazardous waste regulation. In April 2015, the EPA published the final CCR rule with the material being regulated under the second scenario presented above - as non-hazardous wastes regulated under RCRA Subtitle D. Under the EPA Rule, Entergy operates groundwater monitoring systems surrounding its coal combustion residual landfills located at White Bluff, Independence, and Nelson. Monitoring to date has detected certain listed constituents in the area but has not indicated that these constituents originated at
the active landfill cells. Reporting has occurred as required, and detection monitoring will continue as the rule requires. In late-2017, Entergy determined that certain in-ground wastewater treatment system recycle ponds at its White Bluff and Independence facilities require management under the new EPA regulations. Consequently, to move away from using the recycling ponds, White Bluff and Independence each have installed a new permanent bottom ash handling system that does not fall under the CCR rule. These systems were installed due to the update to the Steam Electric Effluent Limitation Guidelines (published in 2015) that required bottom ash transport systems to be zero discharge. That regulation was litigated and re-issued in 2020 which allowed discharge of the bottom ash system water (up to 10% of the systems wetted volume) as long as it was approved by the state agency. As of November 2020, both sites were operating the new system and were no longer sending waste to the recycling ponds. Each
site has commenced closure of its two recycle ponds.

W3.3

(W3.3) Does your organization undertake a water-related risk assessment?

Yes, water-related risks are assessed

W3.3a

(W3.3a) Select the options that best describe your procedures for identifying and assessing water-related risks.

Value chain stage

Direct operations

Coverage

Full

Risk assessment procedure

Water risks are assessed as part of an established enterprise risk management framework

Frequency of assessment

More than once a year

How far into the future are risks considered?

3 to 6 years

Type of tools and methods used

Enterprise risk management

Tools and methods used

Contextual issues considered

- Water availability at a basin/catchment level
- Water quality at a basin/catchment level
- Stakeholder conflicts concerning water resources at a basin/catchment level
- Implications of water on your key commodities/raw materials
- Water regulatory frameworks
- Status of ecosystems and habitats
- Access to fully-functioning, safely managed WASH services for all employees

Stakeholders considered

Customers
Comment

Entergy uses an Enterprise Risk Management (ERM) program to identify, capture, and mitigate risks that would impede Supply Chain and the rest of Entergy from accomplishing its objectives. Facilitated sessions are conducted across the Company with each business leader, along with knowledgeable financial and operational personnel from each group. Since the original implementation of ERM, Internal Audit continues to monitor the functional groups with updating their risk profile. Entergy has identified water as a "Risk Factor" in its public disclosures and this risk is described in the SEC Form 10-K and is evaluated/updated on a quarterly basis. Additionally, the Water Peer Group, which includes representatives from all of Entergy's business functions, monitors water stressed areas on at least an annual basis using the WRI Aqueduct map and data or similar resources. Some suppliers are not included in this assessment if they are judged to not be material users of water. Additionally, in 2021, Entergy corporate controls for managing risks were the EMS Policy and EMS Procedure. Entergy’s EMS policy establishes that business units identify and assess risks, including water supply and water quality that could impact their direct operations.

Value chain stage

Supply chain

Coverage

Full

Risk assessment procedure

Water risks are assessed as part of an established enterprise risk management framework

Frequency of assessment

More than once a year

How far into the future are risks considered?

3 to 6 years

Type of tools and methods used

Enterprise risk management
Tools and methods used

Contextual issues considered
- Water availability at a basin/catchment level
- Water quality at a basin/catchment level
- Stakeholder conflicts concerning water resources at a basin/catchment level
- Implications of water on your key commodities/raw materials
- Water regulatory frameworks
- Status of ecosystems and habitats
- Access to fully-functioning, safely managed WASH services for all employees

Stakeholders considered
- Customers
- Employees
- Investors
- Local communities
- NGOs
- Regulators
- Suppliers
- Water utilities at a local level
- Other water users at the basin/catchment level
- Other, please specify
 - River Basin Management authorities, Statutory special interest groups at a local level

Comment
Entergy uses an Enterprise Risk Management (ERM) program to identify, capture, and mitigate risks that would impede Supply Chain and the rest of Entergy from accomplishing its objectives. Facilitated sessions are conducted across the Company with each business leader, along with knowledgeable financial and operational personnel from each group. Since the original implementation of ERM, Internal Audit continues to monitor the functional groups with updating their risk profile. Entergy has identified water as a "Risk Factor" in its public disclosures and this risk is described in the SEC Form 10-K and is evaluated/updated on a quarterly basis. Additionally, the Water Peer Group, which includes representatives from all of Entergy's business functions, monitors water stressed areas on at least an annual basis using the WRI Aqueduct map and data or similar resources. Some suppliers are not included in this assessment if they are judged to not be material users of water.

W3.3b
(W3.3b) Describe your organization’s process for identifying, assessing, and responding to water-related risks within your direct operations and other stages of your value chain.

Entergy has a strong risk management culture and has systems in place to track regulatory changes at the national, regional, state, and local levels. The regulatory tracking includes
potential regulatory changes to water use, restrictions, withdrawal rights, discharge standards, or water pricing/tariffs. These systems reside in various groups within the company, including federal regulatory affairs, state regulatory affairs groups, corporate environmental, business function environmental support groups, and facility management. This tracking is important to identify regulatory risks, potential cost increases, and potential operational impacts. Information from this tracking is used to perform scenario planning, cost projections and to predict operational changes in the future. Scenario and impact analysis is conducted for regulatory changes as needed, and this analysis is presented to environmental and regulatory leadership for information and strategy development. Estimates of potential regulatory changes occur by participating in regulatory efforts as an industry stakeholder and serving on several local allocation planning groups as appropriate. Entergy has integrated regulatory changes on water use issues into its corporate-wide risk management process for regulatory issues. Entergy engages with stakeholders on regulatory issues that affect its business performance. The Water Peer Group meets quarterly, and it runs the Atlas at least twice a year. When new projects are initiated, the Atlas is not run but the risks of flooding, water availability, etc. are evaluated by the corporate risk committee, which ensures that all the potential risks to the project are identified and considered. For example, in 2020 Entergy continued to work extensively with the Edison Electric Institute and the Cross Cutting Issues Group to provide input to EPA on effluent limitations guidelines, the expansion of federal Clean Water Act jurisdiction including applicability of Nationwide Permits. Entergy noted increased regulatory scrutiny of compliance with CWA Sections 402 and 404 and increasingly restrictive supporting regulations could result in increases in costs of compliance. It should further be noted that project construction permitting can be threatened by the availability of impact mitigation credits to comply with the "no net loss" of wetlands mandate. To mitigate these risks, Entergy secured Section 214 positions in various districts.

W4. Risks and opportunities

W4.1

(W4.1) Have you identified any inherent water-related risks with the potential to have a substantive financial or strategic impact on your business?

Yes, both in direct operations and the rest of our value chain

W4.1a

(W4.1a) How does your organization define substantive financial or strategic impact on your business?

Entergy views substantive financial impact as a water risk issue that rises to the materiality level requiring SEC disclosure. The measure(s) used in the definition of substantive impact is a) any water risk issue potentially resulting in a compliance violation, permit exceedance, or breach of an agreement, or b) any physical water risk that could interrupt the operation of power plants. The threshold used is a change in the metric/measure/indicator, which indicates the substantive impact on direct operations, supply chain, or both. Thresholds vary by indicator. For example, any single permit exceedance would likely not meet the threshold for that
indicator; however, taken in aggregate, they may or may not represent a substantive or financial impact. The frequency and process for review: The metrics and thresholds above are reviewed or updated and reported quarterly, first through the Water Peer Group and subject matter experts, then again reviewed during the Enterprise Risk Management Process (ERM).

W4.1b

(W4.1b) What is the total number of facilities exposed to water risks with the potential to have a substantive financial or strategic impact on your business, and what proportion of your company-wide facilities does this represent?

<table>
<thead>
<tr>
<th>Total number of facilities exposed to water risk</th>
<th>% company-wide facilities this represents</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row 1 26</td>
<td>51-75</td>
<td>Includes the following Facilities - White Bluff, Independence, Hot Spring, Union Power, Lake Catherine, Ouachita, Nelson, Waterford 1 & 2, Lake Charles, J. Wayne Leonard, Little Gypsy, Nine Mile Point, Ninemile 6, Perryville, Baxter Wilson, Gerald Andrus, Attala, Lewis Creek, Montgomery County, Sabine, Arkansas Nuclear One, Grand Gulf, Indian Point, Palisades, River Bend, and Waterford 3.</td>
</tr>
</tbody>
</table>

W4.1c

(W4.1c) By river basin, what is the number and proportion of facilities exposed to water risks that could have a substantive financial or strategic impact on your business, and what is the potential business impact associated with those facilities?

<table>
<thead>
<tr>
<th>Country/Area & River basin</th>
</tr>
</thead>
<tbody>
<tr>
<td>United States of America</td>
</tr>
<tr>
<td>Mississippi River</td>
</tr>
</tbody>
</table>

Number of facilities exposed to water risk	10
% company-wide facilities this represents	1-25
% company’s annual electricity generation that could be affected by these facilities	1-25
% company’s total global revenue that could be affected	Less than 1%
Comment
Includes 1.) Waterford 1 & 2 2.) Wayne Leonard (SCPS) 3.) Little Gypsy 4.) Ninemile Point 5.) Baxter Wilson 6.) Grand Gulf 7.) River Bend and 8.) Waterford 3 9.) Gerald Andrus.

Entergy’s regulated electric utility business derives revenue from electric generation, transmission, and distribution, subject to state and local rate regulation. Should one of Entergy’s generation facilities encounter a water shortage or quality issue, any power reduction would be supplemented or replaced by other available power sources. Entergy has a duty to serve the load requirements of our customers, so there would be no revenue impact.

Country/Area & River basin
United States of America
Other, please specify
Arkansas River

Number of facilities exposed to water risk
2

% company-wide facilities this represents
1-25

% company’s annual electricity generation that could be affected by these facilities
1-25

% company’s total global revenue that could be affected
Less than 1%

Comment
Includes 1.) Arkansas Nuclear One and 2.) White Bluff

Entergy’s regulated electric utility business derives revenue from electric generation, transmission, and distribution, subject to state and local rate regulation. Should one of Entergy’s generation facilities encounter a water shortage or quality issue, any power reduction would be supplemented or replaced by other available power sources. Entergy has a duty to serve the load requirements of our customers, so there would be no revenue impact.

Country/Area & River basin
United States of America
Other, please specify
Ouachita River
Number of facilities exposed to water risk
5

% company-wide facilities this represents
1-25

% company’s annual electricity generation that could be affected by these facilities
1-25

% company’s total global revenue that could be affected
Less than 1%

Comment
Includes 1.) Hot Spring 2.) Ouachita 3.) Union Power 4.) Perryville and 5.) Lake Catherine

Entergy’s regulated electric utility business derives revenue from electric generation, transmission, and distribution, subject to state and local rate regulation. Should one of Entergy’s generation facilities encounter a water shortage or quality issue, any power reduction would be supplemented or replaced by other available power sources. Entergy has a duty to serve the load requirements of our customers, so there would be no revenue impact.

Country/Area & River basin
United States of America
Hudson River

Number of facilities exposed to water risk
1

% company-wide facilities this represents
1-25

% company’s annual electricity generation that could be affected by these facilities
1-25

% company’s total global revenue that could be affected
Less than 1%

Comment
Includes 1.) Indian Point
During the first half of 2021, this facility was closed and sold to another party.

Entergy Corporation CDP Water Security Questionnaire 2022 Thursday, August 11, 2022
Country/Area & River basin
United States of America
Other, please specify
San Jacinto River (Lewis Creek Reservoir)

Number of facilities exposed to water risk
1

% company-wide facilities this represents
1-25

% company’s annual electricity generation that could be affected by these facilities
1-25

% company’s total global revenue that could be affected
Less than 1%

Comment
Includes 1.) Lewis Creek

Entergy’s regulated electric utility business derives revenue from electric generation, transmission, and distribution, subject to state and local rate regulation. Should one of Entergy’s generation facilities encounter a water shortage or quality issue, any power reduction would be supplemented or replaced by other available power sources. Entergy has a duty to serve the load requirements of our customers, so there would be no revenue impact.

Country/Area & River basin
United States of America
Other, please specify
White River

Number of facilities exposed to water risk
1

% company-wide facilities this represents
1-25

% company’s annual electricity generation that could be affected by these facilities
1-25

% company’s total global revenue that could be affected
Less than 1%

Comment
Includes 1.) Independence

Entergy’s regulated electric utility business derives revenue from electric generation, transmission, and distribution, subject to state and local rate regulation. Should one of Entergy’s generation facilities encounter a water shortage or quality issue, any power reduction would be supplemented or replaced by other available power sources. Entergy has a duty to serve the load requirements of our customers, so there would be no revenue impact.

Country/Area & River basin
United States of America
Sabine River

Number of facilities exposed to water risk
3

% company-wide facilities this represents
1-25

% company’s annual electricity generation that could be affected by these facilities
1-25

% company’s total global revenue that could be affected
Less than 1%

Comment
Includes 1.) Nelson 2.) Sabine and 3.) Lake Charles

Entergy’s regulated electric utility business derives revenue from electric generation, transmission, and distribution, subject to state and local rate regulation. Should one of Entergy’s generation facilities encounter a water shortage or quality issue, any power reduction would be supplemented or replaced by other available power sources. Entergy has a duty to serve the load requirements of our customers, so there would be no revenue impact.

Country/Area & River basin
United States of America
Other, please specify
Big Black River

Number of facilities exposed to water risk
1

% company-wide facilities this represents
1-25

% company's annual electricity generation that could be affected by these facilities
1-25

% company's total global revenue that could be affected
Less than 1%

Comment
Includes 1.) Attala

Entergy's regulated electric utility business derives revenue from electric generation, transmission, and distribution, subject to state and local rate regulation. Should one of Entergy's generation facilities encounter a water shortage or quality issue, any power reduction would be supplemented or replaced by other available power sources. Entergy has a duty to serve the load requirements of our customers, so there would be no revenue impact.

Country/Area & River basin
 United States of America
 St. Lawrence

Number of facilities exposed to water risk
1

% company-wide facilities this represents
1-25

% company's annual electricity generation that could be affected by these facilities
1-25

% company's total global revenue that could be affected
1-10

Comment
Includes 1.) Palisades

Entergy's Palisades plant sells power under an established power purchase agreement and is slated to cease operations in 2022, and Entergy intends to sell the plant to a third-party.
W4.2

(W4.2) Provide details of identified risks in your direct operations with the potential to have a substantive financial or strategic impact on your business, and your response to those risks.

<table>
<thead>
<tr>
<th>Country/Area & River basin</th>
</tr>
</thead>
<tbody>
<tr>
<td>United States of America</td>
</tr>
<tr>
<td>Mississippi River</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type of risk & Primary risk driver</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regulatory</td>
</tr>
<tr>
<td>Lack of transparency of water rights</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Primary potential impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fines, penalties or enforcement orders</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Company-specific description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virtually all of Entergy’s discharges to water are controlled either by state-issued, federally enforceable permits issued under the National Pollutant Discharge Elimination System of the federal Clean Water Act or by similar state programs. In addition, Entergy facilities operate under approximately 40,000 specific water pollution control permit requirements. If a permit requirement is in exceedance, depending on the severity of the violation, monetary fines and fees can be imposed on the power plants.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Timeframe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current up to one year</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Magnitude of potential impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Likelihood</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unlikely</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Are you able to provide a potential financial impact figure?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes, an estimated range</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Potential financial impact figure (currency)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potential financial impact figure - minimum (currency)</td>
</tr>
<tr>
<td>1,000</td>
</tr>
<tr>
<td>Potential financial impact figure - maximum (currency)</td>
</tr>
<tr>
<td>27,500</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Explanation of financial impact</th>
</tr>
</thead>
</table>
Depending on the exceedance of the permit requirement, the fine issued to the power plant may vary based on the duration and severity of the violation. Incurring a penalty or fine for permit noncompliance would be rare for Entergy, as across our operations, Entergy has maintained a compliance rate with state and federal water pollution control permit requirements of at least 99.9% from year to year.

Primary response to risk
- Other, please specify
 - Internal Procedures and Policy

Description of response
Entergy maintains a robust environmental compliance program, and water stewardship is an integral part of the company's environmental policies. Compliance with all state-issued, federally enforceable permits are tracked internally, and Entergy also makes this information publicly available.

https://www.entergy.com/userfiles/content/sustainability/performance_data_table.pdf

These practices and a strong commitment to environmental compliance have led Entergy to maintain a compliance rate with state and federal water pollution control permit requirements of at least 99.99% from year to year.

Cost of response
- 500,000

Explanation of cost of response
The cost of response is associated with a third-party compliance EHS auditing program. Water permit compliance is one of many regulatory obligations examined during these audits.

Country/Area & River basin
- United States of America
- Mississippi River

Type of risk & Primary risk driver
- Acute physical
- Flood (coastal, fluvial, pluvial, groundwater)

Primary potential impact
- Reduction or disruption in production capacity

Company-specific description
River flooding which curtails operations at the power plants.

Timeframe
- Unknown

Magnitude of potential impact
Low

Likelihood
- Likely

Are you able to provide a potential financial impact figure?
 - No, we do not have this figure

Potential financial impact figure (currency)

Potential financial impact figure - minimum (currency)

Potential financial impact figure - maximum (currency)

Explanation of financial impact

Primary response to risk
- Other, please specify
 - Shift energy production

Description of response
- Shift energy production to other reserve units until river levels subside.

Cost of response

Explanation of cost of response
- Financial investment will depend on the specific project, unable to estimate at this time.
- Implementation costs vary considerably based on level of process change option selected.

Country/Area & River basin
- United States of America
- Mississippi River

Type of risk & Primary risk driver
- Regulatory
- Regulatory uncertainty

Primary potential impact
- Other, please specify
 - Delays in permitting

Company-specific description
Entergy’s ability to operate is contingent upon the receipt of relevant regulatory permits and permissions. This ability may be compromised if the relevant regulatory agencies do not issue needed permits.

Timeframe
Unknown

Magnitude of potential impact
Unknown

Likelihood
Likely

Are you able to provide a potential financial impact figure?
No, we do not have this figure

Potential financial impact figure (currency)

Potential financial impact figure - minimum (currency)

Potential financial impact figure - maximum (currency)

Explanation of financial impact

Primary response to risk
Engage with regulators/policymakers

Description of response
Entergy keeps abreast of the applicable federal, state and local regulatory changes that may affect its operating facilities. Entergy interacts with regulators/policymakers for additional guidance when required.

Cost of response

Explanation of cost of response
Financial investment will depend on the specific project, unable to estimate at this time. Implementation costs vary considerably based on level of process change option selected.

Country/Area & River basin
United States of America
Mississippi River
Type of risk & Primary risk driver
- Reputation & markets
- Community opposition

Primary potential impact
- Other, please specify
- Requirement for remediation

Company-specific description
Entergy's ability to operate is contingent upon the receipt of relevant regulatory permits and permissions. This ability may be compromised if the relevant regulatory agencies and stakeholders do not have confidence in the company's ability to comply with environmental requirements.

Timeframe
1-3 years

Magnitude of potential impact
High

Likelihood
Likely

Are you able to provide a potential financial impact figure?
No, we do not have this figure

Potential financial impact figure (currency)

Potential financial impact figure - minimum (currency)

Potential financial impact figure - maximum (currency)

Explanation of financial impact

Primary response to risk
Comply with local regulatory requirements

Description of response
The NRC requires nuclear power plants to regularly monitor and report the presence of radioactive material in the environment. Entergy joined other nuclear utilities and the Nuclear Energy Institute in 2006 to develop a voluntary groundwater monitoring and protection program. This initiative began after detection of very low levels of radioactive material, primarily tritium, in groundwater at several plants in the United States. Tritium is a radioactive form of hydrogen that occurs naturally and is also a by-product of nuclear plant operations. In addition to tritium, other radionuclides have been found in on site ground water at nuclear plants. As part of the groundwater monitoring and
protection program, Entergy has: (1) performed reviews of plant groundwater characteristics (hydrology) and historical records of past events on site that may have potentially impacted groundwater; (2) implemented fleet procedures on how to handle events that could impact groundwater; and (3) installed groundwater monitoring wells and began periodic sampling. The program also includes protocols for notifying local officials if contamination is found.

Cost of response

Explanation of cost of response

Financial investment will depend on the specific project, unable to estimate at this time. Implementation costs vary considerably based on level of process change option selected.

Country/Area & River basin

United States of America
Other, please specify
Ouachita River

Type of risk & Primary risk driver

Acute physical
Flood (coastal, fluvial, pluvial, groundwater)

Primary potential impact

Reduction or disruption in production capacity

Company-specific description

River flooding which curtails operations at the power plants.

Timeframe

Unknown

Magnitude of potential impact

Medium

Likelihood

Unlikely

Are you able to provide a potential financial impact figure?

No, we do not have this figure

Potential financial impact figure (currency)

Potential financial impact figure - minimum (currency)

Potential financial impact figure - maximum (currency)
Explanation of financial impact

Primary response to risk
Other, please specify
Shift energy production

Description of response
Shift energy production to other reserve units until water levels subside.

Cost of response

Explanation of cost of response
Financial investment will depend on the specific project, unable to estimate at this time. Implementation costs vary considerably based on level of process change option selected.

Country/Area & River basin
United States of America
Other, please specify
White River

Type of risk & Primary risk driver
Acute physical
Flood (coastal, fluvial, pluvial, groundwater)

Primary potential impact
Reduction or disruption in production capacity

Company-specific description
River flooding curtailing operations at the power plant.

Timeframe
Unknown

Magnitude of potential impact
Unknown

Likelihood
Unknown

Are you able to provide a potential financial impact figure?
No, we do not have this figure

Potential financial impact figure (currency)
Potential financial impact figure - minimum (currency)

Potential financial impact figure - maximum (currency)

Explanation of financial impact

Primary response to risk
 Other, please specify
 Shift energy production

Description of response
 Shift energy production to other reserve units until water levels subside.

Cost of response

Explanation of cost of response
 Financial investment will depend on the specific project, unable to estimate at this time.
 Implementation costs vary considerably based on level of process change option selected.

Country/Area & River basin
 United States of America
 Sabine River

Type of risk & Primary risk driver
 Acute physical
 Flood (coastal, fluvial, pluvial, groundwater)

Primary potential impact
 Reduction or disruption in production capacity

Company-specific description
 River flooding curtailing operations at the power plant.

Timeframe
 Unknown

Magnitude of potential impact
 Unknown

Likelihood
 Unknown

Are you able to provide a potential financial impact figure?
 No, we do not have this figure
Potential financial impact figure (currency)

Potential financial impact figure - minimum (currency)

Potential financial impact figure - maximum (currency)

Explanation of financial impact

Primary response to risk
 Other, please specify
 Shift energy production

Description of response
 Shift energy production to other reserve units until water levels subside.

Cost of response

Explanation of cost of response
 Financial investment will depend on the specific project, unable to estimate at this time. Implementation costs vary considerably based on level of process change option selected.

Country/Area & River basin
 United States of America
 Pearl River

Type of risk & Primary risk driver
 Acute physical
 Flood (coastal, fluvial, pluvial, groundwater)

Primary potential impact
 Reduction or disruption in production capacity

Company-specific description
 River flooding curtailing operations at the power plant.

Timeframe
 Unknown

Magnitude of potential impact
 Unknown

Likelihood
 Unknown
Are you able to provide a potential financial impact figure?
 No, we do not have this figure

Potential financial impact figure (currency)

Potential financial impact figure - minimum (currency)

Potential financial impact figure - maximum (currency)

Explanation of financial impact

Primary response to risk
 Other, please specify
 Shift energy production

Description of response
 Shift energy production to other reserve units until water levels subside.

Cost of response

Explanation of cost of response
 Financial investment will depend on the specific project, unable to estimate at this time. Implementation costs vary considerably based on level of process change option selected.

Country/Area & River basin
 United States of America
 Other, please specify
 Big Black River

Type of risk & Primary risk driver
 Acute physical
 Flood (coastal, fluvial, pluvial, groundwater)

Primary potential impact
 Reduction or disruption in production capacity

Company-specific description
 River flooding curtailing operations at the power plant.

Timeframe
 Unknown

Magnitude of potential impact
Unknown

Likelihood
Unknown

Are you able to provide a potential financial impact figure?
No, we do not have this figure

Potential financial impact figure (currency)

Potential financial impact figure - minimum (currency)

Potential financial impact figure - maximum (currency)

Explanation of financial impact

Primary response to risk
Other, please specify
Shift energy production

Description of response
Shift energy production to other reserve units until water levels subside.

Cost of response

Explanation of cost of response
Financial investment will depend on the specific project, unable to estimate at this time. Implementation costs vary considerably based on level of process change option selected.

Country/Area & River basin
United States of America
St. Lawrence

Type of risk & Primary risk driver
Acute physical
Flood (coastal, fluvial, pluvial, groundwater)

Primary potential impact
Reduction or disruption in production capacity

Company-specific description
River flooding which curtails operations at the power plants.
Timeframe
Unknown

Magnitude of potential impact
Unknown

Likelihood
Unknown

Are you able to provide a potential financial impact figure?
No, we do not have this figure

Potential financial impact figure (currency)

Potential financial impact figure - minimum (currency)

Potential financial impact figure - maximum (currency)

Explanation of financial impact

Primary response to risk
Other, please specify
Shift energy production

Description of response
Shift energy production to other reserve units until river levels subside.

Cost of response

Explanation of cost of response
Financial investment will depend on the specific project, unable to estimate at this time. Implementation costs vary considerably based on level of process change option selected.

Country/Area & River basin
United States of America
Other, please specify
San Jacinto River (Lewis Creek Reservoir)

Type of risk & Primary risk driver
Acute physical
Flood (coastal, fluvial, pluvial, groundwater)

Primary potential impact
Reduction or disruption in production capacity

Company-specific description
During periods of river flood stage, the electric generation from the plant may need to be reduced.

Timeframe
1-3 years

Magnitude of potential impact
Low

Likelihood
Likely

Are you able to provide a potential financial impact figure?
No, we do not have this figure

Potential financial impact figure (currency)

Potential financial impact figure - minimum (currency)

Potential financial impact figure - maximum (currency)

Explanation of financial impact

Primary response to risk
Other, please specify
Water Conservation

Description of response
Entergy undertook a long-term strategic study of water availability for its Lewis Creek Plant. The study included analysis of the groundwater wells and water plant system at Lewis Creek, and the facility developed and executed a plan to reduce water withdrawal by 30% through process design changes. By working with the district to optimize water use and leveraging best practices, Lewis Creek was able to exceed its water conservation goal of 30 percent water withdrawal by 2016 – a level also maintained throughout 2021.

Cost of response

Explanation of cost of response
Financial investment will depend on the specific project, unable to estimate at this time. Implementation costs vary considerably based on level of process change option selected.
Country/Area & River basin
 United States of America
 Other, please specify
 Arkansas River

Type of risk & Primary risk driver
 Regulatory
 Lack of transparency of water rights

Primary potential impact
 Fines, penalties or enforcement orders

Company-specific description
 Virtually all of Entergy’s discharges to water are controlled either by state-issued, federally enforceable permits issued under the National Pollution Discharge Elimination System of the federal Clean Water Act or by similar state programs. In addition, Entergy facilities operate under approximately 40,000 specific water pollution control permit requirements. If a permit requirement is in exceedance, depending on the severity of the violation, monetary fines and fees can be imposed on the power plants.

Timeframe
 Current up to one year

Magnitude of potential impact
 Low

Likelihood
 Unlikely

Are you able to provide a potential financial impact figure?
 Yes, an estimated range

Potential financial impact figure (currency)

Potential financial impact figure - minimum (currency)

Potential financial impact figure - maximum (currency)

Explanation of financial impact
 Depending on the exceedance of the permit requirement, the fine issued to the power plant may vary based on the duration and severity of the violation. Incurring a penalty or fine for permit noncompliance would be rare for Entergy, as across our operations, Entergy has maintained a compliance rate with state and federal water pollution control permit requirements of at least 99.9% from year to year.
Primary response to risk
 Other, please specify
 Internal Procedures and Policy

Description of response
 Entergy maintains a robust environmental compliance program, and water stewardship
 is an integral part of the company’s environmental policies. Compliance with all state-
 issued, federally enforceable permits are tracked internally, and Entergy also makes this
 information publicly available.

 https://www.entergy.com/userfiles/content/sustainability/performance_data_table.pdf

 These practices and a strong commitment to environmental compliance have led
 Entergy to maintain a compliance rate with state and federal water pollution control
 permit requirements of at least 99.9% from year to year.

Cost of response

Explanation of cost of response
 The cost of response is associated with a third-party compliance EHS auditing program.
 Water permit compliance is one of many regulatory obligations examined during these
 audits.

Country/Area & River basin
 United States of America
 Other, please specify
 Ouachita River

Type of risk & Primary risk driver
 Regulatory
 Lack of transparency of water rights

Primary potential impact
 Fines, penalties or enforcement orders

Company-specific description
 Virtually all of Entergy’s discharges to water are controlled either by state-issued,
 federally enforceable permits issued under the National Pollution Discharge Elimination
 System of the federal Clean Water Act or by similar state programs. In addition, Entergy
 facilities operate under approximately 40,000 specific water pollution control permit
 requirements. If a permit requirement is in exceedance, depending on the severity of the
 violation, monetary fines and fees can be imposed on the power plants.

Timeframe
 Current up to one year
Magnitude of potential impact
Low

Likelihood
Unlikely

Are you able to provide a potential financial impact figure?
Yes, an estimated range

Potential financial impact figure (currency)

Potential financial impact figure - minimum (currency)

Potential financial impact figure - maximum (currency)

Explanation of financial impact
Depending on the exceedance of the permit requirement, the fine issued to the power plant may vary based on the duration and severity of the violation. Incurring a penalty or fine for permit noncompliance would be rare for Entergy, as across our operations, Entergy has maintained a compliance rate with state and federal water pollution control permit requirements of at least 99.9% from year to year.

Primary response to risk
Other, please specify
Internal Procedures and Policy

Description of response
Entergy maintains a robust environmental compliance program, and water stewardship is an integral part of the company's environmental policies. Compliance with all state-issued, federally enforceable permits are tracked internally, and Entergy also makes this information publicly available.

https://www.entergy.com/userfiles/content/sustainability/performance_data_table.pdf

These practices and a strong commitment to environmental compliance have led Entergy to maintain a compliance rate with state and federal water pollution control permit requirements of at least 99.9% from year to year.

Cost of response

Explanation of cost of response
The cost of response is associated with a third-party compliance EHS auditing program. Water permit compliance is one of many regulatory obligations examined during these audits.
Country/Area & River basin
United States of America
St. Lawrence

Type of risk & Primary risk driver
Regulatory
Lack of transparency of water rights

Primary potential impact
Fines, penalties or enforcement orders

Company-specific description
Virtually all of Entergy’s discharges to water are controlled either by state-issued, federally enforceable permits issued under the National Pollution Discharge Elimination System of the federal Clean Water Act or by similar state programs. In addition, Entergy facilities operate under approximately 40,000 specific water pollution control permit requirements. If a permit requirement is in exceedance, depending on the severity of the violation, monetary fines and fees can be imposed on the power plants.

Timeframe
Current up to one year

Magnitude of potential impact
Low

Likelihood
Unlikely

Are you able to provide a potential financial impact figure?
Yes, an estimated range

Potential financial impact figure (currency)

Potential financial impact figure - minimum (currency)

Potential financial impact figure - maximum (currency)

Explanation of financial impact
Depending on the exceedance of the permit requirement, the fine issued to the power plant may vary based on the duration and severity of the violation. Incurring a penalty or fine for permit noncompliance would be rare for Entergy, as across our operations, Entergy has maintained a compliance rate with state and federal water pollution control permit requirements of at least 99.99% from year to year.

Primary response to risk
Other, please specify

Internal Procedures and Policy

Description of response
Entergy maintains a robust environmental compliance program, and water stewardship is an integral part of the company's environmental policies. Compliance with all state-issued, federally enforceable permits are tracked internally, and Entergy also makes this information publicly available.

https://www.entergy.com/userfiles/content/sustainability/performance_data_table.pdf

These practices and a strong commitment to environmental compliance have led Entergy to maintain a compliance rate with state and federal water pollution control permit requirements of at least 99.9% from year to year.

Cost of response

Explanation of cost of response
The cost of response is associated with a third-party compliance EHS auditing program. Water permit compliance is one of many regulatory obligations examined during these audits.

Country/Area & River basin

United States of America
Other, please specify
San Jacinto River (Lewis Creek Reservoir)

Type of risk & Primary risk driver

Regulatory
Lack of transparency of water rights

Primary potential impact
Fines, penalties or enforcement orders

Company-specific description
Virtually all of Entergy’s discharges to water are controlled either by state-issued, federally enforceable permits issued under the National Pollution Discharge Elimination System of the federal Clean Water Act or by similar state programs. In addition, Entergy facilities operate under approximately 40,000 specific water pollution control permit requirements. If a permit requirement is in exceedance, depending on the severity of the violation, monetary fines and fees can be imposed on the power plants.

Timeframe
Current up to one year

Magnitude of potential impact
Low

Likelihood
Unlikely

Are you able to provide a potential financial impact figure?
Yes, an estimated range

Potential financial impact figure (currency)

Potential financial impact figure - minimum (currency)

Potential financial impact figure - maximum (currency)

Explanation of financial impact
Depending on the exceedance of the permit requirement, the fine issued to the power plant may vary based on the duration and severity of the violation. Incurring a penalty or fine for permit noncompliance would be rare for Entergy, as across our operations, Entergy has maintained a compliance rate with state and federal water pollution control permit requirements of at least 99.9% from year to year.

Primary response to risk
Other, please specify
Internal Procedures and Policy

Description of response
Entergy maintains a robust environmental compliance program, and water stewardship is an integral part of the company's environmental policies. Compliance with all state-issued, federally enforceable permits are tracked internally, and Entergy also makes this information publicly available.

https://www.entergy.com/userfiles/content/sustainability/performance_data_table.pdf

These practices and a strong commitment to environmental compliance have led Entergy to maintain a compliance rate with state and federal water pollution control permit requirements of at least 99.9% from year to year.

Cost of response

Explanation of cost of response
The cost of response is associated with a third-party compliance EHS auditing program. Water permit compliance is one of many regulatory obligations examined during these audits.
Country/Area & River basin
United States of America
Other, please specify
White River

Type of risk & Primary risk driver
Regulatory
Lack of transparency of water rights

Primary potential impact
Fines, penalties or enforcement orders

Company-specific description
Virtually all of Entergy’s discharges to water are controlled either by state-issued, federally enforceable permits issued under the National Pollution Discharge Elimination System of the federal Clean Water Act or by similar state programs. In addition, Entergy facilities operate under approximately 40,000 specific water pollution control permit requirements. If a permit requirement is in exceedance, depending on the severity of the violation, monetary fines and fees can be imposed on the power plants.

Timeframe
Current up to one year

Magnitude of potential impact
Low

Likelihood
Unlikely

Are you able to provide a potential financial impact figure?
Yes, an estimated range

Potential financial impact figure (currency)

Potential financial impact figure - minimum (currency)

Potential financial impact figure - maximum (currency)

Explanation of financial impact
Depending on the exceedance of the permit requirement, the fine issued to the power plant may vary based on the duration and severity of the violation. Incurring a penalty or fine for permit noncompliance would be rare for Entergy, as across our operations, Entergy has maintained a compliance rate with state and federal water pollution control permit requirements of at least 99.99% from year to year.

Primary response to risk
Other, please specify
Internal Procedures and Policy

Description of response
Entergy maintains a robust environmental compliance program, and water stewardship is an integral part of the company’s environmental policies. Compliance with all state-issued, federally enforceable permits are tracked internally, and Entergy also makes this information publicly available.

https://www.entergy.com/userfiles/content/sustainability/performance_data_table.pdf

These practices and a strong commitment to environmental compliance have led Entergy to maintain a compliance rate with state and federal water pollution control permit requirements of at least 99.9% from year to year.

Cost of response

Explanation of cost of response
The cost of response is associated with a third-party compliance EHS auditing program. Water permit compliance is one of many regulatory obligations examined during these audits.

Country/Area & River basin
United States of America
Other, please specify
Big Black River

Type of risk & Primary risk driver
Regulatory
Lack of transparency of water rights

Primary potential impact
Fines, penalties or enforcement orders

Company-specific description
Virtually all of Entergy’s discharges to water are controlled either by state-issued, federally enforceable permits issued under the National Pollution Discharge Elimination System of the federal Clean Water Act or by similar state programs. In addition, Entergy facilities operate under approximately 40,000 specific water pollution control permit requirements. If a permit requirement is in exceedance, depending on the severity of the violation, monetary fines and fees can be imposed on the power plants.

Timeframe
Current up to one year

Magnitude of potential impact
Low
Likelihood
 Unlikely

Are you able to provide a potential financial impact figure?
 Yes, an estimated range

Potential financial impact figure (currency)

Potential financial impact figure - minimum (currency)

Potential financial impact figure - maximum (currency)

Explanation of financial impact
 Depending on the exceedance of the permit requirement, the fine issued to the power plant may vary based on the duration and severity of the violation. Incurring a penalty or fine for permit noncompliance would be rare for Entergy, as across our operations, Entergy has maintained a compliance rate with state and federal water pollution control permit requirements of at least 99.9% from year to year.

Primary response to risk
 Other, please specify
 Internal Procedures and Policy

Description of response
 Entergy maintains a robust environmental compliance program, and water stewardship is an integral part of the company’s environmental policies. Compliance with all state-issued, federally enforceable permits are tracked internally, and Entergy also makes this information publicly available.

 https://www.entergy.com/userfiles/content/sustainability/performance_data_table.pdf

 These practices and a strong commitment to environmental compliance have led Entergy to maintain a compliance rate with state and federal water pollution control permit requirements of at least 99.9% from year to year.

Cost of response

Explanation of cost of response
 The cost of response is associated with a third-party compliance EHS auditing program. Water permit compliance is one of many regulatory obligations examined during these audits.
W4.2a

(W4.2a) Provide details of risks identified within your value chain (beyond direct operations) with the potential to have a substantive financial or strategic impact on your business, and your response to those risks.

<table>
<thead>
<tr>
<th>Country/Area & River basin</th>
</tr>
</thead>
<tbody>
<tr>
<td>United States of America</td>
</tr>
<tr>
<td>Other, please specify</td>
</tr>
<tr>
<td>Arkansas River</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stage of value chain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply chain</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type of risk & Primary risk driver</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute physical</td>
</tr>
<tr>
<td>Flood (coastal, fluvial, pluvial, groundwater)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Primary potential impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduction or disruption in production capacity</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Company-specific description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entergy's fossil generation facilities are at risk for obtaining fuel supplies during severe weather events. Examples of such occurrences are flooding in the Midwest to the extent the rail shipments of coal were curtailed and during extreme weather events when natural gas supplies were curtailed.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Timeframe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unknown</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Magnitude of potential impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medium-low</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Likelihood</th>
</tr>
</thead>
<tbody>
<tr>
<td>Likely</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Are you able to provide a potential financial impact figure?</th>
</tr>
</thead>
<tbody>
<tr>
<td>No, we do not have this figure</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Potential financial impact figure (currency)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Potential financial impact figure - minimum (currency)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Potential financial impact figure - maximum (currency)</th>
</tr>
</thead>
</table>
Explanation of financial impact

Primary response to risk
 Direct operations
 Other, please specify
 Alternate sources of fuel are identified and acquired to maintain generation activities at the sites.

Description of response
 Alternate sources of fuel are identified and acquired to maintain generation activities at the sites. The only generation source in this river basin is a coal plant, where coal inventory is stockpiled.

Cost of response

Explanation of cost of response
 Financial investment will depend on the specific project, unable to estimate at this time. Implementation costs vary considerably based on level of process change option selected.

W4.3

(W4.3) Have you identified any water-related opportunities with the potential to have a substantive financial or strategic impact on your business?
 Yes, we have identified opportunities, and some/all are being realized

W4.3a

(W4.3a) Provide details of opportunities currently being realized that could have a substantive financial or strategic impact on your business.

Type of opportunity
 Resilience

Primary water-related opportunity
 Increased resilience to impacts of climate change

Company-specific description & strategy to realize opportunity
 Entergy deploys storm guys on critical distribution structures in open marsh areas along the coast. Storm guys are tensioned cables designed to add stability to our structures. On distribution circuits close to the Gulf Coast, we use class three (or larger) poles for trunk feeder construction. Class three poles are rated to withstand 3,000 lbs. of horizontal load. Climate change may cause flooding and storms to become more frequent. Being resilient to these occurrences is imperative to Entergy’s operations.
Entergy continually prepares for storms and flooding and limits the potential damages they can cause on our systems by:

- Completing at least one cycle of transmission aerial inspections before June of each year.
- Continuing to identify distribution circuits with operational challenges and devices which tend to cause reliability issues and take appropriate steps to improve the performance of these facilities.
- Identifying and removing dangerous trees outside of rights-of-way to prevent them from falling into our lines.
- Purchasing portable batteries and mobile substation equipment for quick restoration of power when our substations are compromised by storms.
- Upgrading communications systems to enhance our ability to limit the impact of outages through improved protection and controls.

Estimated timeframe for realization

More than 6 years

Magnitude of potential financial impact

High

Are you able to provide a potential financial impact figure?

No, we do not have this figure

Potential financial impact figure (currency)

Potential financial impact figure – minimum (currency)

Potential financial impact figure – maximum (currency)

Explanation of financial impact

Type of opportunity

Resilience

Primary water-related opportunity

Increased resilience to impacts of climate change

Company-specific description & strategy to realize opportunity

Entergy recognizes the linkage between climate change and water usage and the importance of water stewardship. Entergy plans to invest over $11.6 billion in capital (as of February 2021) over the next three years (2021E to 2023E) in generation assets and transmission and distribution infrastructure. Initiated in 2002, Entergy’s portfolio transformation strategy incorporates cleaner, more efficient generation sources, allowing
for the retirement of older, less efficient legacy units. This proposed fleet modernization is expected to drastically reduce Entergy’s water withdrawal volumes, as these newer plants would withdraw significantly less water than our legacy units. Currently, 31% of our portfolio is non-emitting, mostly coming from nuclear energy. Clean, modern natural gas represents 34% of our generation capacity. Since 2000, Entergy’s utilities have added 10.5 GW of highly efficient generation. These units improve system reliability, reduce environmental impacts, and reduce costs for our customers by using less fuel. They also have lower maintenance costs and produce significantly fewer emissions than older generation.

Estimated timeframe for realization
More than 6 years

Magnitude of potential financial impact
High

Are you able to provide a potential financial impact figure?
No, we do not have this figure

Potential financial impact figure (currency)

Potential financial impact figure – minimum (currency)

Potential financial impact figure – maximum (currency)

Explanation of financial impact

W5. Facility-level water accounting

W5.1

(W5.1) For each facility referenced in W4.1c, provide coordinates, water accounting data, and a comparison with the previous reporting year.

<table>
<thead>
<tr>
<th>Facility reference number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Facility 1</td>
</tr>
</tbody>
</table>

Facility name (optional)
River Bend Station

Country/Area & River basin
United States of America
Mississippi River
Latitude
30.759557

Longitude
-91.330083

Located in area with water stress
No

Primary power generation source for your electricity generation at this facility
Nuclear

Total water withdrawals at this facility (megaliters/year)
25,297.16

Comparison of total withdrawals with previous reporting year
Lower

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
25,297.16

Withdrawals from brackish surface water/seawater
0

Withdrawals from groundwater - renewable
0

Withdrawals from groundwater - non-renewable
0

Withdrawals from produced/entrained water
0

Withdrawals from third party sources
0

Total water discharges at this facility (megaliters/year)
5,094.11

Comparison of total discharges with previous reporting year
Lower

Discharges to fresh surface water
5,094.11

Discharges to brackish surface water/seawater
0

Discharges to groundwater
0
Discharges to third party destinations
0

Total water consumption at this facility (megaliters/year)
20,203.05

Comparison of total consumption with previous reporting year
Lower

Please explain
Last year, water consumption at the River Bend Station was 10.84% lower than the water consumed during 2020. Power production at the Facility was lower in 2021 compared to 2020, resulting in more water being consumed during 2020. Yearly changes less than 5 percent were considered “about the same.” Changes between 5% and 25% were considered ”higher” or ”lower.” Year-to-year changes greater than 25% were considered ”much higher”/”much lower.”

Facility reference number
Facility 2

Facility name (optional)
Grand Gulf Nuclear Station

Country/Area & River basin
United States of America
Mississippi River

Latitude
32.009462

Longitude
-91.047001

Located in area with water stress
No

Primary power generation source for your electricity generation at this facility
Nuclear

Total water withdrawals at this facility (megaliters/year)
59,450.16

Comparison of total withdrawals with previous reporting year
Much higher

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
0
Withdrawals from brackish surface water/seawater
0

Withdrawals from groundwater - renewable
59,450.16

Withdrawals from groundwater - non-renewable
0

Withdrawals from produced/entrained water
0

Withdrawals from third party sources
0

Total water discharges at this facility (megaliters/year)
9,865.24

Comparison of total discharges with previous reporting year
Much higher

Discharges to fresh surface water
9,865.24

Discharges to brackish surface water/seawater
0

Discharges to groundwater
0

Discharges to third party destinations
0

Total water consumption at this facility (megaliters/year)
49,584.93

Comparison of total consumption with previous reporting year
Much higher

Please explain
Last year, water consumption at the Grand Gulf was 161.45% greater than the water consumed during 2020. Power production at the Facility was higher in 2021 compared to 2020, resulting in more water being consumed during 2021. Yearly changes less than 5 percent were considered "about the same." Changes between 5% and 25% were considered "higher" or "lower." Year-to-year changes greater than 25% were considered "much higher"/"much lower."

Facility reference number
Facility 3
Facility name (optional)
Waterford 3 Nuclear Generating Station

Country/Area & River basin
United States of America
Mississippi River

Latitude
29.996843

Longitude
-90.471402

Located in area with water stress
No

Primary power generation source for your electricity generation at this facility
Nuclear

Total water withdrawals at this facility (megaliters/year)
1,526,045.23

Comparison of total withdrawals with previous reporting year
About the same

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
1,526,045.23

Withdrawals from brackish surface water/seawater
0

Withdrawals from groundwater - renewable
0

Withdrawals from groundwater - non-renewable
0

Withdrawals from produced/entrained water
0

Withdrawals from third party sources
0

Total water discharges at this facility (megaliters/year)
1,526,045.23

Comparison of total discharges with previous reporting year
About the same

Discharges to fresh surface water
1,526,045.23

Discharges to brackish surface water/seawater
0

Discharges to groundwater
0

Discharges to third party destinations
0

Total water consumption at this facility (megaliters/year)
0

Comparison of total consumption with previous reporting year
About the same

Please explain
Water consumption at the Waterford 3 Nuclear Generating Station during 2021 was approximately the same as consumption during 2020. The Facility withdraws but does not consume water as it employs once-through cooling, discharging all water that is withdrawn. Yearly changes less than 5 percent were considered "about the same." Changes between 5% and 25% were considered "higher" or "lower." Year-to-year changes greater than 25% were considered "much higher"/"much lower."

Facility reference number
Facility 4

Facility name (optional)
Arkansas Nuclear One

Country/Area & River basin
United States of America
Other, please specify
Arkansas River

Latitude
35.310705

Longitude
-93.23088

Located in area with water stress
No

Primary power generation source for your electricity generation at this facility
Nuclear

Total water withdrawals at this facility (megaliters/year)
Comparison of total withdrawals with previous reporting year

Higher

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
1,353,105.58

Withdrawals from brackish surface water/seawater
0

Withdrawals from groundwater - renewable
0

Withdrawals from groundwater - non-renewable
0

Withdrawals from produced/entrained water
0

Withdrawals from third party sources
0

Total water discharges at this facility (megaliters/year)
1,335,564.14

Comparison of total discharges with previous reporting year

About the same

Discharges to fresh surface water
1,335,564.14

Discharges to brackish surface water/seawater
0

Discharges to groundwater
0

Discharges to third party destinations
0

Total water consumption at this facility (megaliters/year)
17,541.44

Comparison of total consumption with previous reporting year

Lower

Please explain

Water consumption at Arkansas Nuclear One during 2021 was lower than consumption during 2020. The Facility consumed 17,541.44 megaliters of water during 2021, which is
5.29% percent lower than the water consumed during 2020. This decrease is attributable to lower power production from the facility in 2021 vs 2020. Yearly changes less than 5 percent were considered "about the same." Changes between 5% and 25% were considered "higher" or "lower." Year-to-year changes greater than 25% were considered "much higher"/"much lower."

Facility reference number
Facility 5

Facility name (optional)
Indian Point Energy Center

Country/Area & River basin
United States of America
Hudson River

Latitude
41.270801

Longitude
-73.953142

Located in area with water stress
No

Primary power generation source for your electricity generation at this facility
Nuclear

Total water withdrawals at this facility (megliters/year)
14,301.32

Comparison of total withdrawals with previous reporting year
Much lower

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
0

Withdrawals from brackish surface water/seawater
14,301.32

Withdrawals from groundwater - renewable
0

Withdrawals from groundwater - non-renewable
0

Withdrawals from produced/entrained water
0
Withdrawals from third party sources
0

Total water discharges at this facility (megaliters/year)
1,335,564.14

Comparison of total discharges with previous reporting year
Higher

Discharges to fresh surface water
0

Discharges to brackish surface water/seawater
1,335,564.14

Discharges to groundwater
0

Discharges to third party destinations
0

Total water consumption at this facility (megaliters/year)
0

Comparison of total consumption with previous reporting year
About the same

Please explain
Water consumption at the Indian Point Energy Center during 2021 was the same as consumption during 2020. The Facility withdraws but does not consume water as it employs once-through cooling, discharging all water that is withdrawn. Withdrawals and discharges were much lower in 2021 than in 2020 due to much lower power production at the facility due to operation during only a portion of 2021. Yearly changes less than 5 percent were considered "about the same." Changes between 5% and 25% were considered "higher" or "lower." Year-to-year changes greater than 25% were considered "much higher" or "much lower."

Facility reference number
Facility 6

Facility name (optional)
Lewis Creek Power Plant

Country/Area & River basin
United States of America
Other, please specify
Other: San Jacinto River (Lewis Creek Reservoir)

Latitude
Longitude
-95.520726

Located in area with water stress
Yes

Primary power generation source for your electricity generation at this facility
Gas

Total water withdrawals at this facility (megaliters/year)
515,169.33

Comparison of total withdrawals with previous reporting year
Lower

Withdrawals from fresh surface water, including rainwater, water from
wetlands, rivers and lakes
515,169.33

Withdrawals from brackish surface water/seawater
0

Withdrawals from groundwater - renewable
0

Withdrawals from groundwater - non-renewable
0

Withdrawals from produced/entrained water
0

Withdrawals from third party sources
0

Total water discharges at this facility (megaliters/year)
515,169.33

Comparison of total discharges with previous reporting year
Lower

Discharges to fresh surface water
515,169.33

Discharges to brackish surface water/seawater
0

Discharges to groundwater
0

Discharges to third party destinations
Total water consumption at this facility (megaliters/year)
0

Comparison of total consumption with previous reporting year
About the same

Please explain
Water consumption at the Lewis Creek Power Plant during 2021 was the same as consumption during 2020. The Facility withdraws but does not consume water as it employs once-through cooling, discharging all water that is withdrawn. Yearly changes less than 5 percent were considered "about the same." Changes between 5% and 25% were considered "higher" or "lower." Year-to-year changes greater than 25% were considered "much higher"/"much lower."

Facility reference number
Facility 7

Facility name (optional)
White Bluff Power Plant

Country/Area & River basin
United States of America
Other, please specify
Arkansas River

Latitude
34.4236

Longitude
-92.1392

Located in area with water stress
No

Primary power generation source for your electricity generation at this facility
Coal - hard

Total water withdrawals at this facility (megaliters/year)
11,316.17

Comparison of total withdrawals with previous reporting year
Much higher

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
11,316.17
Withdrawals from brackish surface water/seawater
0
Withdrawals from groundwater - renewable
0
Withdrawals from groundwater - non-renewable
0
Withdrawals from produced/entrained water
0
Withdrawals from third party sources
0
Total water discharges at this facility (megaliters/year)
2,975.06
Comparison of total discharges with previous reporting year
Much higher
Discharges to fresh surface water
2,975.06
Discharges to brackish surface water/seawater
0
Discharges to groundwater
0
Discharges to third party destinations
0
Total water consumption at this facility (megaliters/year)
8,341.1
Comparison of total consumption with previous reporting year
Much higher
Please explain
Water consumption at White Bluff during 2021 was much higher than consumption during 2020. The Facility consumed 8,341.10 megaliters of water during 2021, which was much higher than the water consumed during 2020. Power production at the Facility was much higher in 2021 compared to 2020, resulting in more water being consumed during 2021. Yearly changes less than 5 percent were considered "about the same." Changes between 5% and 25% were considered "higher" or "lower." Year-to-year changes greater than 25% were considered "much higher"/"much lower."
Facility 8

Facility name (optional)
Lake Charles

Country/Area & River basin
United States of America
Sabine River

Latitude
30.271896

Longitude
-93.290606

Located in area with water stress
No

Primary power generation source for your electricity generation at this facility
Gas

Total water withdrawals at this facility (megaliters/year)
6,388.64

Comparison of total withdrawals with previous reporting year
Much higher

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
0

Withdrawals from brackish surface water/seawater
0

Withdrawals from groundwater - renewable
0

Withdrawals from groundwater - non-renewable
0

Withdrawals from produced/entrained water
0

Withdrawals from third party sources
6,388.64

Total water discharges at this facility (megaliters/year)
1,506.18

Comparison of total discharges with previous reporting year
Much higher
Discharges to fresh surface water
1,506.18

Discharges to brackish surface water/seawater
0

Discharges to groundwater
0

Discharges to third party destinations
0

Total water consumption at this facility (megaliters/year)
4,882.46

Comparison of total consumption with previous reporting year
Much higher

Please explain
Water consumption at Lake Charles during 2021 was much higher than consumption during 2020. The Facility consumed 4,882.46 megaliters of water during 2021, which much higher than the water consumed during 2020. Power production at the Facility was much higher in 2021 compared to 2020, resulting in more water being consumed during 2021. Yearly changes less than 5 percent were considered "about the same." Changes between 5% and 25% were considered "higher" or "lower." Year-to-year changes greater than 25% were considered "much higher"/"much lower."

Facility reference number
Facility 9

Facility name (optional)
Wayne Leonard (SCPS)

Country/Area & River basin
United States of America
Mississippi River

Latitude
30.005737

Longitude
-90.452922

Located in area with water stress
No

Primary power generation source for your electricity generation at this facility
Gas
Total water withdrawals at this facility (megaliters/year)
6,634.6

Comparison of total withdrawals with previous reporting year
About the same

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
6,634.6

Withdrawals from brackish surface water/seawater
0

Withdrawals from groundwater - renewable
0

Withdrawals from groundwater - non-renewable
0

Withdrawals from produced/entrained water
0

Withdrawals from third party sources
0

Total water discharges at this facility (megaliters/year)
1,506.18

Comparison of total discharges with previous reporting year
Much lower

Discharges to fresh surface water
1,506.18

Discharges to brackish surface water/seawater
0

Discharges to groundwater
0

Discharges to third party destinations
0

Total water consumption at this facility (megaliters/year)
5,128.42

Comparison of total consumption with previous reporting year
Much higher

Please explain
Water consumption at J. Wayne Leonard (SCPS) during 2021 was much higher than consumption during 2020. The Facility consumed 4,986.26 megaliters of water during 2021, which much higher than the water consumed during 2020. This increase appears to be attributable to increased evaporative losses from cooling towers in 2021 compared to 2020. Yearly changes less than 5 percent were considered "about the same." Changes between 5% and 25% were considered "higher" or "lower." Year-to-year changes greater than 25% were considered "much higher"/"much lower."

Facility reference number
Facility 10

Facility name (optional)
Independence Power Plant

Country/Area & River basin
United States of America
Other, please specify
White River

Latitude
35.6733

Longitude
-91.4083

Located in area with water stress
No

Primary power generation source for your electricity generation at this facility
Coal - hard

Total water withdrawals at this facility (megaliters/year)
9,349.97

Comparison of total withdrawals with previous reporting year
Higher

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
9,349.97

Withdrawals from brackish surface water/seawater
0

Withdrawals from groundwater - renewable
0

Withdrawals from groundwater - non-renewable
Withdrawals from produced/entrained water
0

Withdrawals from third party sources
0

Total water discharges at this facility (megaliters/year)
1,461.17

Comparison of total discharges with previous reporting year
Higher

Discharges to fresh surface water
1,461.17

Discharges to brackish surface water/seawater
0

Discharges to groundwater
0

Discharges to third party destinations
0

Total water consumption at this facility (megaliters/year)
7,888.8

Comparison of total consumption with previous reporting year
Higher

Please explain
Last year, water consumption at Independence was 9.85% higher than the water consumed during 2020. Power production at the Facility was higher in 2021 compared to 2020, resulting in more water being consumed during 2021. Yearly changes less than 5 percent were considered "about the same." Changes between 5% and 25% were considered "higher" or "lower." Year-to-year changes greater than 25% were considered "much higher" or "much lower."

Facility reference number
Facility 11

Facility name (optional)
Hot Spring Energy Facility

Country/Area & River basin
United States of America
Other, please specify
Ouachita River

Latitude
34.2963

Longitude
-92.8683

Located in area with water stress
No

Primary power generation source for your electricity generation at this facility
Gas

Total water withdrawals at this facility (megaliters/year)
1,134.6

Comparison of total withdrawals with previous reporting year
Much lower

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
1,134.6

Withdrawals from brackish surface water/seawater
0

Withdrawals from groundwater - renewable
0

Withdrawals from groundwater - non-renewable
0

Withdrawals from produced/entrained water
0

Withdrawals from third party sources
0

Total water discharges at this facility (megaliters/year)
199.79

Comparison of total discharges with previous reporting year
Lower

Discharges to fresh surface water
199.79

Discharges to brackish surface water/seawater
0

Discharges to groundwater
Discharges to third party destinations
0

Total water consumption at this facility (megaliters/year)
934.81

Comparison of total consumption with previous reporting year
Much lower

Please explain
Last year, water consumption at Hot Spring was 30.09% lower than the water consumed during 2020. This decrease in consumption is due to improved water management practices implemented at the site in 2021. Yearly changes less than 5 percent were considered "about the same." Changes between 5% and 25% were considered "higher" or "lower." Year-to-year changes greater than 25% were considered "much higher"/"much lower."

Facility reference number
Facility 12

Facility name (optional)
Ouachita Gas Power Plant

Country/Area & River basin
United States of America
Other, please specify
Ouachita River

Latitude
32.7056

Longitude
-92.0697

Located in area with water stress
No

Primary power generation source for your electricity generation at this facility
Gas

Total water withdrawals at this facility (megaliters/year)
3,390.14

Comparison of total withdrawals with previous reporting year
Lower
Water Withdrawals

<table>
<thead>
<tr>
<th>Source</th>
<th>Quantity (megaliters/year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes</td>
<td>3,390.14</td>
</tr>
<tr>
<td>Withdrawals from brackish surface water/seawater</td>
<td>0</td>
</tr>
<tr>
<td>Withdrawals from groundwater - renewable</td>
<td>0</td>
</tr>
<tr>
<td>Withdrawals from groundwater - non-renewable</td>
<td>0</td>
</tr>
<tr>
<td>Withdrawals from produced/entrained water</td>
<td>0</td>
</tr>
<tr>
<td>Withdrawals from third party sources</td>
<td>0</td>
</tr>
</tbody>
</table>

Total Water Discharges

<table>
<thead>
<tr>
<th>Type</th>
<th>Quantity (megaliters/year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total water discharges at this facility</td>
<td>790.89</td>
</tr>
</tbody>
</table>

Comparison of Total Discharges

- About the same

Water Consumption

<table>
<thead>
<tr>
<th>Type</th>
<th>Quantity (megaliters/year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total water consumption at this facility</td>
<td>2,599.25</td>
</tr>
</tbody>
</table>

Comparison of Total Consumption

- Lower

Please explain

Last year, water consumption at the Facility was 20.66% lower than the water consumed during 2020. Power production at the facility was lower in 2021 compared to 2020, resulting in less water being consumed during 2021. Note that during preparation of this 2021 response a discrepancy was noted in the previously reported water data for this site for 2020. The previously reported 2020 values were updated based on the raw data for water withdrawals and discharges at the facility in 2020. The corrected 2020 values are 4,035.38 megaliters/year withdrawn, 759.27 megaliters/year discharged, and
3,276.11 megaliters/year consumed. Yearly changes less than 5 percent were considered "about the same." Changes between 5% and 25% were considered "higher" or "lower." Year-to-year changes greater than 25% were considered "much higher"/"much lower."

Facility reference number
Facility 13

Facility name (optional)
Union Power Station

Country/Area & River basin
United States of America
Other, please specify
Ouachita River

Latitude
33.2961

Longitude
-92.5933

Located in area with water stress
No

Primary power generation source for your electricity generation at this facility
Gas

Total water withdrawals at this facility (megaliters/year)
10,465.98

Comparison of total withdrawals with previous reporting year
Higher

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
0

Withdrawals from brackish surface water/seawater
0

Withdrawals from groundwater - renewable
0

Withdrawals from groundwater - non-renewable
0

Withdrawals from produced/entrained water
0
Withdrawals from third party sources
10,465.98

Total water discharges at this facility (megaliters/year)
1,241.49

Comparison of total discharges with previous reporting year
Higher

Discharges to fresh surface water
1,241.49

Discharges to brackish surface water/seawater
0

Discharges to groundwater
0

Discharges to third party destinations
0

Total water consumption at this facility (megaliters/year)
9,224.49

Comparison of total consumption with previous reporting year
Higher

Please explain
Last year, water consumption at the Facility was 12.73% lower than the water consumed during 2020. Power production at the Facility was lower in 2021 compared to 2020, resulting in less water being consumed during 2021. Yearly changes less than 5 percent were considered "about the same." Changes between 5% and 25% were considered "higher" or "lower." Year-to-year changes greater than 25% were considered "much higher"/"much lower."

Facility reference number
Facility 14

Facility name (optional)
Perryville Power Station

Country/Area & River basin
United States of America
Other, please specify
Ouachita River

Latitude
Longitude
-92.0192

Located in area with water stress
No

Primary power generation source for your electricity generation at this facility
Gas

Total water withdrawals at this facility (megaliters/year)
2,357.85

Comparison of total withdrawals with previous reporting year
Much lower

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
2,357.85

Withdrawals from brackish surface water/seawater
0

Withdrawals from groundwater - renewable
0

Withdrawals from groundwater - non-renewable
0

Withdrawals from produced/entrained water
0

Withdrawals from third party sources
0

Total water discharges at this facility (megaliters/year)
517.94

Comparison of total discharges with previous reporting year
Lower

Discharges to fresh surface water
517.94

Discharges to brackish surface water/seawater
0

Discharges to groundwater
0

Discharges to third party destinations
Total water consumption at this facility (megaliters/year)
1,839.92

Comparison of total consumption with previous reporting year
Much lower

Please explain
Last year, water consumption at the Facility was 32.63% lower than the water consumed during 2020. Power production at the facility was much lower in 2021 compared to 2020, resulting in less water being consumed during 2021. Note that during preparation of this 2021 response a discrepancy was noted in the previously reported water data for this site for 2020. The previously reported 2020 values were updated based on the raw data for water withdrawals and discharges at the facility in 2020. The corrected 2020 values are 3,301.85 megaliters/year withdrawn, 570.41 megaliters/year discharged, and 2,731.44 megaliters/year consumed. Yearly changes less than 5 percent were considered "about the same." Changes between 5% and 25% were considered "higher" or "lower." Year-to-year changes greater than 25% were considered "much higher"/"much lower."
Much lower

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
175,870.23148464

Withdrawals from brackish surface water/seawater
0

Withdrawals from groundwater - renewable
0

Withdrawals from groundwater - non-renewable
0

Withdrawals from produced/entrained water
0

Withdrawals from third party sources
0

Total water discharges at this facility (megaliters/year)
175,870.23

Comparison of total discharges with previous reporting year
Much lower

Discharges to fresh surface water
175,870.23148464

Discharges to brackish surface water/seawater
0

Discharges to groundwater
0

Discharges to third party destinations
0

Total water consumption at this facility (megaliters/year)
0

Comparison of total consumption with previous reporting year
About the same

Please explain
Water consumption at the Facility during 2021 was the same as consumption during 2020. The Facility withdraws but does not consume water as it employs once-through cooling, discharging all water that is withdrawn. Yearly changes less than 5 percent were considered "about the same." Changes between 5% and 25% were considered
"higher" or "lower." Year-to-year changes greater than 25% were considered "much higher"/"much lower."

<table>
<thead>
<tr>
<th>Facility reference number</th>
<th>Facility 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Facility name (optional)</td>
<td>Waterford 1 & 2 Gas Power Plant</td>
</tr>
<tr>
<td>Country/Area & River basin</td>
<td>United States of America</td>
</tr>
<tr>
<td></td>
<td>Mississippi River</td>
</tr>
<tr>
<td>Latitude</td>
<td>29.9994</td>
</tr>
<tr>
<td>Longitude</td>
<td>-90.4758</td>
</tr>
<tr>
<td>Located in area with water stress</td>
<td>No</td>
</tr>
<tr>
<td>Primary power generation source for your electricity generation at this facility</td>
<td>Gas</td>
</tr>
<tr>
<td>Total water withdrawals at this facility (megaliters/year)</td>
<td>14,819.81</td>
</tr>
<tr>
<td>Comparison of total withdrawals with previous reporting year</td>
<td>Much lower</td>
</tr>
<tr>
<td>Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes</td>
<td>14,819.81</td>
</tr>
<tr>
<td>Withdrawals from brackish surface water/seawater</td>
<td>0</td>
</tr>
<tr>
<td>Withdrawals from groundwater - renewable</td>
<td>0</td>
</tr>
<tr>
<td>Withdrawals from groundwater - non-renewable</td>
<td>0</td>
</tr>
<tr>
<td>Withdrawals from produced/entrained water</td>
<td>0</td>
</tr>
<tr>
<td>Withdrawals from third party sources</td>
<td></td>
</tr>
</tbody>
</table>
Total water discharges at this facility (megaliters/year)
14,775.46

Comparison of total discharges with previous reporting year
Much lower

Discharges to fresh surface water
14,775.46

Discharges to brackish surface water/seawater
0

Discharges to groundwater
0

Discharges to third party destinations
0

Total water consumption at this facility (megaliters/year)
44.35

Comparison of total consumption with previous reporting year
About the same

Please explain
Water consumption at the Facility during 2021 was about the same as consumption during 2020. The Facility withdraws but does not consume any significant quantity of water as it employs once-through cooling, discharging all or nearly all water that is withdrawn. Yearly changes less than 5 percent were considered "about the same." Changes between 5% and 25% were considered "higher" or "lower." Year-to-year changes greater than 25% were considered "much higher"/"much lower."

Facility reference number
Facility 17

Facility name (optional)
Little Gypsy Power Plant

Country/Area & River basin
United States of America
Mississippi River

Latitude
30.0033

Longitude
-90.4611
Located in area with water stress
No

Primary power generation source for your electricity generation at this facility
Gas

Total water withdrawals at this facility (megaliters/year)
491,688.37

Comparison of total withdrawals with previous reporting year
Lower

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
491,688.37

Withdrawals from brackish surface water/seawater
0

Withdrawals from groundwater - renewable
0

Withdrawals from groundwater - non-renewable
0

Withdrawals from produced/entrained water
0

Withdrawals from third party sources
0

Total water discharges at this facility (megaliters/year)
468,934.64

Comparison of total discharges with previous reporting year
Lower

Discharges to fresh surface water
468,934.64

Discharges to brackish surface water/seawater
0

Discharges to groundwater
0

Discharges to third party destinations
0

Total water consumption at this facility (megaliters/year)
22,753.73
Comparison of total consumption with previous reporting year

About the same

Please explain

Water consumption at the Facility during 2021 was approximately the same as consumption during 2020. The Facility consumed 22,753.53 megalitres of water during 2021, which is 2.66% lower than the water consumed during 2020. Yearly changes less than 5 percent were considered "about the same." Changes between 5% and 25% were considered "higher" or "lower." Year-to-year changes greater than 25% were considered "much higher"/"much lower."

Facility reference number
Facility 18

Facility name (optional)
Nine Mile Point Steam Electric Station

Country/Area & River basin
United States of America
Mississippi River

Latitude
29.9472

Longitude
-90.1458

Located in area with water stress
No

Primary power generation source for your electricity generation at this facility
Gas

Total water withdrawals at this facility (megaliters/year)
881,999.96

Comparison of total withdrawals with previous reporting year
Lower

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
881,999.96

Withdrawals from brackish surface water/seawater
0

Withdrawals from groundwater - renewable
0
Withdrawals from groundwater - non-renewable
0

Withdrawals from produced/entrained water
0

Withdrawals from third party sources
0

Total water discharges at this facility (megaliters/year)
881,985.37

Comparison of total discharges with previous reporting year
Lower

Discharges to fresh surface water
881,985.37

Discharges to brackish surface water/seawater
0

Discharges to groundwater
0

Discharges to third party destinations
0

Total water consumption at this facility (megaliters/year)
14.6

Comparison of total consumption with previous reporting year
Much lower

Please explain
Last year, water consumption at the Facility was much lower than the quantity consumed during 2020. Power production at the Facility was lower in 2021 compared to 2020, resulting in less water being consumed during 2021. Yearly changes less than 5 percent were considered "about the same." Changes between 5% and 25% were considered "higher" or "lower." Year-to-year changes greater than 25% were considered "much higher" or "much lower."

Facility reference number
Facility 19

Facility name (optional)
Baxter Wilson Power Plant

Country/Area & River basin
United States of America
Mississippi River

Latitude
32.2831

Longitude
-90.9306

Located in area with water stress
No

Primary power generation source for your electricity generation at this facility
Gas

Total water withdrawals at this facility (megaliters/year)
158,023.41

Comparison of total withdrawals with previous reporting year
Much lower

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
158,023.41

Withdrawals from brackish surface water/seawater
0

Withdrawals from groundwater - renewable
0

Withdrawals from groundwater - non-renewable
0

Withdrawals from produced/entrained water
0

Withdrawals from third party sources
0

Total water discharges at this facility (megaliters/year)
157,829.35

Comparison of total discharges with previous reporting year
Much lower

Discharges to fresh surface water
157,829.35

Discharges to brackish surface water/seawater
0
Discharges to groundwater
0

Discharges to third party destinations
0

Total water consumption at this facility (megaliters/year)
194.06

Comparison of total consumption with previous reporting year
Much higher

Please explain
Last year, water consumption at the Facility was much higher than the quantity consumed during 2020. The Facility withdraws but does not consume any significant quantity of water as it employs once-through cooling, discharging all or nearly all water that is withdrawn. Consumption values for both years were only a small fraction (<0.15%) of withdrawals and discharges. Year-to-year changes less than 5 percent were considered "about the same." Changes between 5% and 25% were considered "higher" or "lower." Year-to-year changes greater than 25% were considered "much higher"/"much lower."

Facility reference number
Facility 20

Facility name (optional)
Gerald Andrus Gas Power Plant

Country/Area & River basin
United States of America
Mississippi River

Latitude
33.3503

Longitude
91.1181

Located in area with water stress
No

Primary power generation source for your electricity generation at this facility
Gas

Total water withdrawals at this facility (megaliters/year)
64,767.69

Comparison of total withdrawals with previous reporting year
Much lower

<table>
<thead>
<tr>
<th>Withdrawals</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>from fresh surface water, including rainwater, water from wetlands, rivers and lakes</td>
<td>64,767.69</td>
</tr>
<tr>
<td>brackish surface water/seawater</td>
<td>0</td>
</tr>
<tr>
<td>groundwater - renewable</td>
<td>0</td>
</tr>
<tr>
<td>groundwater - non-renewable</td>
<td>0</td>
</tr>
<tr>
<td>produced/entrained water</td>
<td>0</td>
</tr>
<tr>
<td>third party sources</td>
<td>0</td>
</tr>
</tbody>
</table>

Total water discharges at this facility (megaliters/year)

<table>
<thead>
<tr>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>64,767.69</td>
</tr>
</tbody>
</table>

Comparison of total discharges with previous reporting year

<table>
<thead>
<tr>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Much lower</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Discharges</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>to fresh surface water</td>
<td>64,767.69</td>
</tr>
<tr>
<td>brackish surface water/seawater</td>
<td>0</td>
</tr>
<tr>
<td>groundwater</td>
<td>0</td>
</tr>
<tr>
<td>third party destinations</td>
<td>0</td>
</tr>
</tbody>
</table>

Total water consumption at this facility (megaliters/year)

<table>
<thead>
<tr>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

Comparison of total consumption with previous reporting year

<table>
<thead>
<tr>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>About the same</td>
</tr>
</tbody>
</table>

Please explain

Water consumption at the Facility during 2021 was about the same as consumption during 2020. The Facility withdraws but does not consume water as it employs once-through cooling, discharging all water that is withdrawn. Year-to-year changes less than 5 percent were considered "about the same." Changes between 5% and 25% were considered "higher" or "lower." Year-to-year changes greater than 25% were considered...
"much higher"/"much lower."

Facility reference number
Facility 21

Facility name (optional)
Nelson Power Plant

Country/Area & River basin
United States of America
Sabine River

Latitude
30.2861

Longitude
-93.2917

Located in area with water stress
No

Primary power generation source for your electricity generation at this facility
Coal - hard

Total water withdrawals at this facility (megaliters/year)
3,533.05

Comparison of total withdrawals with previous reporting year
Much higher

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
0

Withdrawals from brackish surface water/seawater
0

Withdrawals from groundwater - renewable
1,410.2

Withdrawals from groundwater - non-renewable
0

Withdrawals from produced/entrained water
0

Withdrawals from third party sources
2,122.85
Total water discharges at this facility (megaliters/year)
2,696.51

Comparison of total discharges with previous reporting year
Higher

Discharges to fresh surface water
2,696.51

Discharges to brackish surface water/seawater
0

Discharges to groundwater
0

Discharges to third party destinations
0

Total water consumption at this facility (megaliters/year)
836.54

Comparison of total consumption with previous reporting year
Much higher

Please explain
Water consumption at the Facility during 2021 was much higher than consumption during 2020. Total net electrical generation from the facility was also much higher than in 2020 and the change in consumption is proportional to this change in generation. Note, in 2020, the facility began to supplement the use of third-party water withdrawals with groundwater from on-site wells. This groundwater usage was inadvertently omitted from the 2020 CDP response. Yearly changes less than 5 percent were considered "about the same." Changes between 5% and 25% were considered "higher" or "lower." Year-to-year changes greater than 25% were considered "much higher"/"much lower."

Facility reference number
Facility 22

Facility name (optional)
Sabine Gas Power Plant

Country/Area & River basin
United States of America
Sabine River

Latitude
30.0242

Longitude
Located in area with water stress
No

Primary power generation source for your electricity generation at this facility
Gas

Total water withdrawals at this facility (megaliters/year)
1,359,455.52

Comparison of total withdrawals with previous reporting year
About the same

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
0

Withdrawals from brackish surface water/seawater
1,355,975.65

Withdrawals from groundwater - renewable
0

Withdrawals from groundwater - non-renewable
0

Withdrawals from produced/entrained water
0

Withdrawals from third party sources
3,479.23

Total water discharges at this facility (megaliters/year)
1,355,981.86

Comparison of total discharges with previous reporting year
About the same

Discharges to fresh surface water
0

Discharges to brackish surface water/seawater
1,355,982.5

Discharges to groundwater
0

Discharges to third party destinations
0

Total water consumption at this facility (megaliters/year)
3,473.03

Comparison of total consumption with previous reporting year

Much lower

Please explain

Last year, water consumption at the Facility was much lower than the quantity consumed during 2020. The Facility consumed 3,473.03 megalitres of water during 2021, which is 59.06% lower than the water consumed during 2020. Power production at the Facility was lower in 2021 compared to 2020, resulting in less water being consumed during 2021. Yearly changes less than 5 percent were considered "about the same." Changes between 5% and 25% were considered "higher" or "lower." Year-to-year changes greater than 25% were considered "much higher"/"much lower."

Facility reference number

Facility 23

Facility name (optional)

Palisades Power Plant

Country/Area & River basin

United States of America
St. Lawrence

Latitude
42.324567

Longitude
-86.314595

Located in area with water stress

No

Primary power generation source for your electricity generation at this facility

Nuclear

Total water withdrawals at this facility (megaliters/year)

179,443.24

Comparison of total withdrawals with previous reporting year

Higher

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes

179,443.24

Withdrawals from brackish surface water/seawater

0
Withdrawals from groundwater - renewable
0
Withdrawals from groundwater - non-renewable
0
Withdrawals from produced/entrained water
0
Withdrawals from third party sources
0
Total water discharges at this facility (megaliters/year)
155,567.89

Comparison of total discharges with previous reporting year
Higher

Discharges to fresh surface water
155,567.89

Discharges to brackish surface water/seawater
0

Discharges to groundwater
0

Discharges to third party destinations
0

Total water consumption at this facility (megaliters/year)
23,875.35

Comparison of total consumption with previous reporting year
Higher

Please explain
Last year, water consumption at the Facility was 16.54% higher than the water consumed during 2020. Power production at the Facility was higher in 2021 compared to 2020, resulting in more water being consumed during 2021. Yearly changes less than 5 percent were considered "about the same." Changes between 5% and 25% were considered "higher" or "lower." Year-to-year changes greater than 25% were considered "much higher"/"much lower."

Facility reference number
Facility 24

Facility name (optional)
Attala Energy Facility
Country/Area & River basin
United States of America
Other, please specify
Big Black River

Latitude
33.0142

Longitude
-89.6758

Located in area with water stress
No

Primary power generation source for your electricity generation at this facility
Gas

Total water withdrawals at this facility (megaliters/year)
2,131.13

Comparison of total withdrawals with previous reporting year
Higher

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
2,131.13

Withdrawals from brackish surface water/seawater
0

Withdrawals from groundwater - renewable
0

Withdrawals from groundwater - non-renewable
0

Withdrawals from produced/entrained water
0

Withdrawals from third party sources
0

Total water discharges at this facility (megaliters/year)
295

Comparison of total discharges with previous reporting year
About the same

Discharges to fresh surface water
295
Discharges to brackish surface water/seawater
0

Discharges to groundwater
0

Discharges to third party destinations
0

Total water consumption at this facility (megaliters/year)
1,836.13

Comparison of total consumption with previous reporting year
Higher

Please explain
Last year, water consumption at Attala was 8.38% higher than the water consumed during 2020. Power production at the Facility was higher in 2021 compared to 2020, resulting in more water being consumed during 2021. Yearly changes less than 5 percent were considered "about the same." Changes between 5% and 25% were considered "higher" or "lower." Year-to-year changes greater than 25% were considered "much higher"/"much lower."

W5.1a

(W5.1a) For the facilities referenced in W5.1, what proportion of water accounting data has been third party verified?

Water withdrawals – total volumes

% verified
76-100

Verification standard used

Typically pump curves and run times are used to quantify this; the verification of water data is performed by a third-party and is based on the data reported by the sites using this quantification method.

Water withdrawals – volume by source

% verified
76-100

Verification standard used

Typically pump curves and run times are used to quantify this; the verification of water data is performed by a third-party and is based on the data reported by the sites using this quantification method.
Water withdrawals – quality by standard water quality parameters

% verified
76-100

Verification standard used

Typically pump curves and run times are used to quantify this; the verification of water data is performed by a third-party and is based on the data reported by the sites using this quantification method.

Water discharges – total volumes

% verified
76-100

Verification standard used

Standards and methodologies as contained in Federal and State NPDES Permits; the verification of water data is performed by a third-party and is based on the data reported by the sites using this quantification method.

Water discharges – volume by destination

% verified
76-100

Verification standard used

Standards and methodologies as contained in Federal and State NPDES Permits; the verification of water data is performed by a third-party and is based on the data reported by the sites using this quantification method.

Water discharges – volume by final treatment level

% verified
76-100

Verification standard used

Standards and methodologies as contained in Federal and State NPDES Permits.

Water discharges – quality by standard water quality parameters

% verified
76-100

Verification standard used
Standards and methodologies as contained in Federal and State NPDES Permits.

Water consumption – total volume

<table>
<thead>
<tr>
<th>% verified</th>
<th>76-100</th>
</tr>
</thead>
</table>

Verification standard used

Standards and methodologies as contained in Federal and State NPDES Permits.

W6. Governance

W6.1

(W6.1) **Does your organization have a water policy?**

Yes, we have a documented water policy that is publicly available

W6.1a

(W6.1a) **Select the options that best describe the scope and content of your water policy.**

<table>
<thead>
<tr>
<th>Scope</th>
<th>Content</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Company-wide</td>
<td>Description of business dependency on water</td>
<td>Entergy’s Environmental Health and Safety Management Policy (EHSMS), Environmental Management System Procedure (EMS), and Water Management Standard apply to all operations of the company. The purpose of these documents is to provide clear direction to all employees regarding the processes and expectations for ensuring water management excellence. Both plans are company-wide and publicly available so that employees and stakeholders can be aware of Entergy’s commitment to water protection. Another publicly available water policy document is Entergy’s Water Management Overview which expands upon the objectives outlined in the EMS and Water Management Standard by providing specific water-related goals and targets that Entergy is working towards achieving. For example, Entergy recognizes the environmental linkage between water and climate change. Entergy has participated in the Department of Energy’s Partnership for Energy Sector Climate Resilience. As described by the department, this initiative intends to enhance U.S. energy security by improving the resilience of energy infrastructure to extreme weather and climate change impacts. The goal is to accelerate investment in technologies, practices, and policies that will enable a resilient 21st-century energy...</td>
</tr>
<tr>
<td>Company-wide</td>
<td>Description of business impact on water</td>
<td></td>
</tr>
<tr>
<td>Company-wide</td>
<td>Description of water-related performance standards for direct operations</td>
<td></td>
</tr>
<tr>
<td>Company-wide</td>
<td>Description of water-related standards for procurement</td>
<td></td>
</tr>
<tr>
<td>Company-wide</td>
<td>Company water targets and goals</td>
<td></td>
</tr>
<tr>
<td>Company-wide</td>
<td>Commitment to stakeholder awareness and education</td>
<td></td>
</tr>
</tbody>
</table>
Commitment to water stewardship and/or collective action
Commitment to safely managed Water, Sanitation and Hygiene (WASH) in the workplace
Commitment to safely managed Water, Sanitation and Hygiene (WASH) in local communities
Acknowledgement of the human right to water and sanitation
Recognition of environmental linkages, for example, due to climate change

system and facilitate risk-based decision-making and cost-effective strategies for a more climate-resilient U.S. energy infrastructure. Further details are provided in the Water Management Overview.

https://www.entergy.com/userfiles/environment/docs/water.pdf

Across our operations, Entergy protects water resources by maintaining a compliance rate with state and federal water pollution control permit requirements of at least 99.9 percent from year to year; however, the Water Management Overview stresses not only the importance of regulatory compliance when it comes to water stewardship, but also increases awareness of water-related issues and incidents at Entergy and spotlights Entergy’s progress towards water-related innovations and engineering. The policies, procedures, and standards outlined in these three documents also ensure consistency across the Entergy system. Entergy’s environmental vision and EHSMS policy are publicly available on the company’s website.

http://www.entergy.com/environment/.

W6.2

(W6.2) Is there board level oversight of water-related issues within your organization?
Yes

W6.2a

(W6.2a) Identify the position(s) (do not include any names) of the individual(s) on the board with responsibility for water-related issues.

<table>
<thead>
<tr>
<th>Position of individual</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chief Executive Officer (CEO)</td>
<td>Entergy’s CEO has the overarching responsibility for managing risk including water management risk, executing strategy that positions the company to prosper in a carbon constrained economy and ensuring actions are taken to meet Entergy’s environmental strategy. Additionally, The CEO chairs the Board of Directors and oversees Entergy’s entire corporate structure, governance, and management.</td>
</tr>
</tbody>
</table>
Other, please specify Board Level Committee

Entergy’s Audit Committee of the Board of Directors has the responsibility for oversight and implementation of Entergy's position, performance and advocacy associated with any material water issues.

Other, please specify Executive Vice President & General Counsel

Entergy’s Executive Vice President and General Counsel has the responsibility for oversight and implementation of Entergy's position, performance and advocacy associated with any material water issues. Additionally, the Executive Vice President and General Counsel has the responsibility of approving Entergy EMS Procedures and revisions as well as interpreting Entergy EMS Procedures, as needed.

Other, please specify Senior Vice President, Sustainable Development, Planning and Operations

Entergy’s SVP, Sustainable Development, Planning and Operations has the responsibility for oversight and implementation of Entergy's transition to a generation mix with a lower carbon footprint, which also results in a lower water footprint.

Other, please specify Vice President, Sustainability & Environmental Policy

Entergy’s Vice President of Sustainability & Environmental Policy has the responsibility for oversight and implementation of Entergy's position, performance and advocacy associated with any material water issues.

Other, please specify Board Chair

Entergy's Chairman is also the CEO and has the overarching responsibility for managing risk including water management risk, executing strategy that positions the company to prosper in a carbon constrained economy and ensuring actions are taken to meet Entergy’s environmental strategy.

Director on board

The Board of Directors in 2002 adopted Entergy’s Environmental Vision Statement which details the company’s commitment to operate its business in ways that preserve and protect our environment.

Other, please specify Director, Corporate Risk

Water permitting requirements, stormwater impacts, surface water impacts, wetlands impacts, and other water-related risks are identified on a corporate level and for significant capital projects and transactions. The Director, Corporate Risk’s capital expenditure risk review process includes assessing water-related and other environmental risks. Water issues are included in a scenario analysis that Entergy conducts as part of its overall due diligence review and analysis of any expansion, acquisition, new project, or investment. Depending on the project, scenario analysis may include water availability issues, quality issues, intake concerns, wetlands issues, and water-related biodiversity impacts. Desktop evaluations are conducted using ArcGIS to determine the water impacts of transmission construction projects in preliminary planning phases.

W6.2b

(W6.2b) Provide further details on the board’s oversight of water-related issues.

<table>
<thead>
<tr>
<th>Frequency that water-related governance mechanisms into</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

110
W6.2d

(W6.2d) Does your organization have at least one board member with competence on water-related issues?

<table>
<thead>
<tr>
<th>Row</th>
<th>Board member(s) have competence on water-related issues</th>
<th>Criteria used to assess competence of board member(s) on water-related issues</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Yes</td>
<td></td>
</tr>
</tbody>
</table>

Senior Management reviews water issues quarterly at Environmental Leadership Team meetings. Briefings on water issues are conducted on a quarterly basis. Material water issues are typically reported quarterly and contained in Entergy’s Annual Reports on Form 10-K. However, issues that are more immediate or of a material nature may be reported more frequently.
W6.3

(W6.3) Provide the highest management-level position(s) or committee(s) with responsibility for water-related issues (do not include the names of individuals).

<table>
<thead>
<tr>
<th>Name of the position(s) and/or committee(s)</th>
<th>Responsibility</th>
<th>Frequency of reporting to the board on water-related issues</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chief Executive Officer (CEO)</td>
<td>Managing water-related risks and opportunities</td>
<td>Quarterly</td>
<td>Entergy's CEO has the overarching responsibility for managing risk including water management risk, executing strategy that positions the company to prosper in a carbon constrained economy and ensuring actions are taken to meet Entergy's environmental strategy. Additionally, the CEO chairs the Board of Directors and oversees Entergy's entire corporate structure, governance, and management.</td>
</tr>
<tr>
<td>Audit Committee of the Board of Directors</td>
<td>Managing water-related risks and opportunities</td>
<td>Quarterly</td>
<td>Entergy's Audit Committee of the Board of Directors has the responsibility for oversight and implementation of Entergy's position, performance and advocacy associated with any material water issues.</td>
</tr>
<tr>
<td>Executive Vice President & General Counsel</td>
<td>Managing water-related risks and opportunities</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Quarterly

Please explain

Entergy's Executive Vice President has the responsibility for oversight and implementation of Entergy's position, performance and advocacy associated with any material water issues. Additionally, the Executive Vice President & General Counsel has the responsibility of approving Entergy EMS Procedures and revisions as well as interpreting Entergy EMS Procedures, as needed.

Name of the position(s) and/or committee(s)

Other, please specify

Senior Vice President, Sustainable Development, Planning and Operations

Responsibility

Managing water-related risks and opportunities

Frequency of reporting to the board on water-related issues

Quarterly

Please explain

Entergy's SVP, Sustainable Development, Planning and Operations has the responsibility for oversight and implementation of Entergy's transition to a generation mix with a lower carbon footprint, which also results in a lower water footprint.

Name of the position(s) and/or committee(s)

Other, please specify

Vice President, Sustainability & Environmental Policy

Responsibility

Managing water-related risks and opportunities

Frequency of reporting to the board on water-related issues

As important matters arise

Please explain

Entergy's Vice President of Sustainability & Environmental Policy has the responsibility for oversight and implementation of Entergy's position, performance and advocacy associated with any material water issues.

Name of the position(s) and/or committee(s)

Other, please specify

Board Chair

Responsibility
Managing water-related risks and opportunities

Frequency of reporting to the board on water-related issues

Quarterly

Please explain

Entergy’s Chairman has the overarching responsibility for managing risk including water management risk, executing strategy that positions the company to prosper in a carbon constrained economy and ensuring actions are taken to meet Entergy’s environmental strategy.

Name of the position(s) and/or committee(s)

Other, please specify

Director, Corporate Risk

Responsibility

Managing water-related risks and opportunities

Frequency of reporting to the board on water-related issues

As important matters arise

Please explain

Water permitting requirements, stormwater impacts, surface water impacts, wetlands impacts, and other water-related risks are identified on a corporate level and for significant capital projects and transactions. The Director, Corporate Risk’s capital expenditure risk review process includes an assessment of water-related and other environmental risks. Water issues are included in a scenario analysis Entergy conducts as part of its overall due diligence review and analysis of any expansion, acquisition, new project, or investment. Depending on the project, scenario analysis may include water availability issues, quality issues, intake concerns, wetlands issues, and water-related biodiversity impacts. Desktop evaluations are conducted using ArcGIS to determine the water impacts of transmission construction projects in preliminary planning phases.

W6.4

(W6.4) Do you provide incentives to C-suite employees or board members for the management of water-related issues?

<table>
<thead>
<tr>
<th>Provide incentives for management of water-related issues</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row 1</td>
<td>Yes</td>
</tr>
</tbody>
</table>
incentive compensation awards reward the achievement of shareholder value using metrics deemed by the Board to be consistent with the overall goals and strategic direction that the Board has set for the company. Achievement of the Company's sustainability objectives influences long-term shareholder value and, correspondingly, the equity awarded each year under the long-term incentive programs. Within the applicable business units, individual awards under our annual incentive plan are directly tied to various sustainability business objectives, including performance under the company's climate commitment and goals.

W6.4a

(W6.4a) What incentives are provided to C-suite employees or board members for the management of water-related issues (do not include the names of individuals)?

<table>
<thead>
<tr>
<th>Role(s) entitled to incentive</th>
<th>Performance indicator</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monetary reward</td>
<td>Corporate executive team</td>
<td>Entergy is not currently independently incentivizing water-related issues using performance indicators. Entergy does provide incentives for effectively managing environmental risks, in which water-related issues are encompassed</td>
</tr>
<tr>
<td></td>
<td>Chief Executive Officer (CEO)</td>
<td>Variable incentive compensation for executives includes financial and non-financial measures. Beginning in 2021 and continuing into 2022, ESG measures (i.e., safety, diversity & inclusion, environmental stewardship and customer net promoter score) determine 40% of the Entergy Achievement Multiplier (EAM), which is the performance metric used to determine the maximum funding available for annual incentive awards. The EAM includes an assessment of progress toward environmental commitments through performance on key initiatives, including measurement of initiatives to drive emissions rate reduction goals, company and customer electrification and climate resilience (transmission and distribution systems, water, reforestation and wetland restoration). These company actions and customer offerings are important actions for creating sustainable shareholder value and are a key business strategy. ESG is integrated into our</td>
</tr>
<tr>
<td></td>
<td>Other, please specify</td>
<td>Entergy is not currently independently incentivizing water-related issues using performance indicators. Entergy does provide incentives for effectively managing environmental risks, in which water-related issues are encompassed</td>
</tr>
<tr>
<td></td>
<td>Senior VP, Sustainable Development, Planning and Operations</td>
<td>Other, please specify</td>
</tr>
</tbody>
</table>
Entergy Corporation has committed to voluntarily reduce our CO2 emission rate to half of what it was in 2000 by 2030 and achieve net-zero carbon emissions by 2050. Entergy recognizes employees for participation in water-related activities, including water advocacy, communicating water-related issues, and involvement in water-related volunteerism.

<table>
<thead>
<tr>
<th>Non-monetary reward</th>
<th>Other, please specify</th>
<th>Reduction of water withdrawals</th>
<th>Entergy recognizes employees for participation in water-related activities, including water advocacy, communicating water-related issues, and involvement in water-related volunteerism.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All Employees</td>
<td>Reduction in consumption volumes</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Improvements in efficiency - direct operations</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Improvements in efficiency - supply chain</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Improvements in waste water quality - direct operations</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Implementation of employee awareness campaign or training program</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Increased access to workplace WASH</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Implementation of water-related community project</td>
<td></td>
</tr>
</tbody>
</table>

W6.5

(W6.5) Do you engage in activities that could either directly or indirectly influence public policy on water through any of the following?
- Yes, direct engagement with policy makers
- Yes, trade associations
- Yes, funding research organizations

W6.5a

(W6.5a) What processes do you have in place to ensure that all of your direct and indirect activities seeking to influence policy are consistent with your water policy/water commitments?
Corporate environmental requirements and guidelines govern Entergy's business functions. Adopted by the Board of Directors in 2002, Entergy's Environmental Vision Statement details the company's commitment to operating its business in ways that preserve and protect our environment. Along with the company's aspirations, the statement guides business policies.
and decisions. Entergy also has established a Environmental, Occupational Health & Safety Management System (EHSMS) Policy that defines its overall governance structure, roles and responsibilities, and management system requirements. Should an entity engaged or supported by Entergy hold a position on water that is not consistent with our water policies, an internal discussion takes place to determine what action to take, after which Entergy's stance on the matter is communicated to the entity.

W6.6

(W6.6) Did your organization include information about its response to water-related risks in its most recent mainstream financial report?

Yes (you may attach the report - this is optional)

W7. Business strategy

W7.1

(W7.1) Are water-related issues integrated into any aspects of your long-term strategic business plan, and if so how?

<table>
<thead>
<tr>
<th>Are water-related issues integrated?</th>
<th>Long-term time horizon (years)</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long-term business objectives</td>
<td>Yes, water-related issues are integrated</td>
<td>5-10</td>
</tr>
<tr>
<td>Strategy for achieving long-term objectives</td>
<td>Yes, water-related issues are integrated</td>
<td>5-10</td>
</tr>
</tbody>
</table>
both water quality and quantity are evaluated as a part of this process. Senior Management reviews water issues quarterly at Environmental Leadership Team meetings, managing and monitoring the path towards achieving long term objectives.

<table>
<thead>
<tr>
<th>Financial planning</th>
<th>Yes, water-related issues are integrated</th>
<th>5-10</th>
</tr>
</thead>
</table>
| Entergy's ERM process and investment approval process (IAP) are companywide processes used to identify material issues and strategic imperatives to analyse and prioritize environmental, weather and climate risks and opportunities for all businesses. The scope of the analysis includes evaluation of climate change proposals, adaptation issues, customer impacts, physical risks, economic impacts, and litigation issues. Entergy's IAP requires projects of sufficient materiality to include scenarios reflecting the cost and/or benefits regarding avoiding damage from extreme weather and other water related issues.

W7.2

(W7.2) What is the trend in your organization’s water-related capital expenditure (CAPEX) and operating expenditure (OPEX) for the reporting year, and the anticipated trend for the next reporting year?

Row 1

<table>
<thead>
<tr>
<th>Water-related CAPEX (+/- % change)</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anticipated forward trend for CAPEX (+/- % change)</td>
<td>0</td>
</tr>
<tr>
<td>Water-related OPEX (+/- % change)</td>
<td>0</td>
</tr>
<tr>
<td>Anticipated forward trend for OPEX (+/- % change)</td>
<td>0</td>
</tr>
</tbody>
</table>

Please explain

The water-related CAPEX, anticipated forward trend for CAPEX, water-related OPEX, and anticipated forward trend for OPEX are estimated to be no changes between 2021 and 2022. For CAPEX expenditures, Entergy continues to upgrade fixed assets, water management facilities, and water security in the same manner from year to year to maintain the functionality of existing stormwater systems, pollution control devices, and new machinery. Although fixed assets are generally replaced with more efficient, lower-use water designs, there is not a calculable $ amount that can be estimated from year to year.
year. Similarly, overall OPEX expenditures are expected to remain relatively consistent from 2021 to 2022, and water-related OPEX is expected to track with overall OPEX trends. Operational expenses for permit renewals, wetland protection, water supply costs, water quality testing, well maintenance, and environmental consulting services have not changed significantly from 2021 to 2022.

W7.3

(W7.3) Does your organization use scenario analysis to inform its business strategy?

<table>
<thead>
<tr>
<th>Use of scenario analysis</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row 1 Yes</td>
<td>Physical risks from today's climate and future climate change include increases in sea level (from both sea level rise and subsidence), wind and storm surge damages, wetland and barrier island erosion, risks of flooding and changes in weather conditions, such as changes in precipitation, average temperatures, and potential increased impacts of extreme weather conditions or storms. To respond to this, Entergy made improvements to our transmission system totalling about $300 million. Today, we are investing approximately $1 billion annually to improve our transmission infrastructure and reliability. Entergy evaluates hardening strategies from a customer perspective, weighing the benefits of fewer and shorter outages against the high costs of hardening the system which our customers ultimately must pay for. As Entergy designs and builds new generation, the site selection process involves reviewing the sites flood potential with a review against 100-year floodplain data for each site.</td>
</tr>
</tbody>
</table>

W7.3a

(W7.3a) Provide details of the scenario analysis, what water-related outcomes were identified, and how they have influenced your organization's business strategy.

<table>
<thead>
<tr>
<th>Type of scenario analysis used</th>
<th>Parameters, assumptions, analytical choices</th>
<th>Description of possible water-related outcomes</th>
<th>Influence on business strategy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row 1 Water-related Other, please specify IEA Sustainable Development Scenario</td>
<td>Increased deployment of renewables. Lifetime extensions of nuclear power plants and some new builds, where applicable and with public acceptance. Expanded support for the deployment of CCUS. Efficiency and emissions standards that prevent the refurbishment of less</td>
<td>Reduced water availability and changes to precipitation patterns due to climate change.</td>
<td>Shifting temperatures and weather patterns causing reduced water availability or disasters restricting the ability to obtain quality water. Increased regulatory scrutiny increasing water usage costs.</td>
</tr>
</tbody>
</table>
efficient fossil fuel plants. Stringent pollution emissions limits for facilities above 50 MWh input using solid fuels set at 200 mg/m³ for SO₂ and NOₓ, and 30 mg/m³ for PM₂.₅.

W7.4

(W7.4) Does your company use an internal price on water?

Row 1

Does your company use an internal price on water?
No, and we do not anticipate doing so within the next two years

Please explain
There is no plan in place yet to be pursued by Entergy.

W7.5

(W7.5) Do you classify any of your current products and/or services as low water impact?

<table>
<thead>
<tr>
<th>Products and/or services classified as low water impact</th>
<th>Definition used to classify low water impact</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row 1 Yes</td>
<td>Power generation facilities that do not use continuous water intake to generate power.</td>
<td>Solar power stations use no water to generate power.</td>
</tr>
</tbody>
</table>

W8. Targets

W8.1

(W8.1) Describe your approach to setting and monitoring water-related targets and/or goals.

<table>
<thead>
<tr>
<th>Levels for targets and/or goals</th>
<th>Monitoring at corporate level</th>
<th>Approach to setting and monitoring targets and/or goals</th>
</tr>
</thead>
</table>
| Row 1 Business level specific targets and/or goals | Goals are monitored at the corporate level | In 2020, Entergy kicked off a water stewardship initiative to develop recommended goals for water resource stewardship for our owned and operated generating fleet. The initiative includes evaluating existing water usage metrics,
benchmarking peer utility metrics and goals, and developing a potential water usage goal for Entergy. Reducing our water use and conserving water resources are top sustainability priorities at Entergy, and this translates to our water related goals. We look for opportunities to reduce water use in our operations while evaluating water availability and ensuring compliance with state and local permits and requirements. At the Lewis Creek Plant in Willis, Texas, a groundwater-constrained area, we worked with the water conservation district to optimize water use, gaining best practices that helped us use water wisely throughout our operations. By setting a site-specific target and monitoring our progress, Entergy was able to exceed its water conservation goal of 30 percent water withdrawal by 2016—a level that we have been able to maintain throughout 2021.

W8.1b

(W8.1b) Provide details of your water goal(s) that are monitored at the corporate level and the progress made.

<table>
<thead>
<tr>
<th>Goal</th>
<th>Other, please specify</th>
<th>Fleet Transformation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level</td>
<td>Business activity</td>
<td></td>
</tr>
<tr>
<td>Motivation</td>
<td>Water stewardship</td>
<td></td>
</tr>
<tr>
<td>Description of goal</td>
<td>Reducing our water use and conserving water resources are top sustainability priorities at Entergy. Entergy's Fleet Portfolio Transformation Strategy is in progress. This Fleet modernization will minimize Entergy's impact on water, as newer plants withdraw significantly less water than our legacy units. Over the past 14 years, Entergy has implemented this goal across the Company by adding approximately 8,855 MW of clean, highly efficient combined-cycle gas turbine generation since 2005, which has allowed the deactivation of thousands of MW of older, less efficient gas or oil units. This transformation has resulted in a significant decrease in water withdrawals of over 1.5 billion gallons/year over the past five years (2016-2021). This trend of decreases in water withdrawals is anticipated to continue through 2030 and beyond, as Entergy continues to transform its generation fleet through the incorporation of modern generation (renewables and hydrogen-capable gas generation) coupled with further</td>
<td></td>
</tr>
</tbody>
</table>
retirements of legacy generating assets which require greater quantities of water withdrawals.

Baseline year
2016

Start year
2016

End year
2030

Progress
Execution of this transformation strategy has resulted in a reduction of more than 1.5 billion gallons/year of water withdrawals over the past five years (2016-2021). Continued execution of this strategy is expected to result in further significant reduction in the quantity of water withdrawals for Entergy generation facilities, as new generation is placed into service and legacy generating units continue to be retired. The primary indicator used to track progress on this metric is the total quantity of water withdrawals for Entergy-Owned Generating units during each calendar year.

Goal
Other, please specify
Nuclear Uprates

Level
Business activity

Motivation
Water stewardship

Description of goal
Investing in our utility nuclear generation assets to maximize their output and ensure safe, reliable operation preserves the long-term benefits of the plants. It is an integral part of our environmental commitment to deliver low-emission energy to our customers while decreasing the amount of water withdrawn as part of our operational processes. Entergy has implemented this goal across our business by investing in nuclear unit uprates that increase generating capacity without requiring an incremental increase in water withdrawal requirements.

Baseline year
2012

Start year
2012

End year
2030
Progress
Indicators used to track progress towards this goal are the following; the increased generation capacity in megawatts that resulted from investing in nuclear unit uprates and the resultant decrease in the amount of water withdrawn. During 2012, Entergy completed a 178 MW capacity uprate at Grand Gulf Nuclear Station, bringing the total uprates since 2001 to 700 MW of new capacity that requires little or no incremental added cooling water. Assuming a 100% capacity factor, this strategy would result in a withdrawal reduction of large quantities of water per year.

Goal
Other, please specify
Energy Efficiency

Level
Company-wide

Motivation
Other, please specify
Sales of new products/services

Description of goal
The Entergy utility companies are committed to pursuing cost-effective Demand-side management (DSM) and have worked towards implementing this goal companywide by identifying 990 MW of peak demand reduction that can be achieved through 2031 as a part of its Integrated Resources Plans. This goal is vital to Entergy as reducing peak demand allows Entergy to provide a secure, economical, and reliable electric service for its many customers.

Baseline year
2002

Start year
2002

End year
2031

Progress
Indicators used to track progress towards this goal are the following; the increased megawatts associated with peak load reduction and the resultant increase in megawatt-hours of cumulative energy savings. Significant progress has been made across regulated utilities that operate in multiple states. Entergy has invested more than $600 million to deliver nearly 900 megawatts of peak load reduction and 2.7 million megawatt-hours of cumulative energy savings, resulting in savings of almost 23 billion gallons of water per year. Currently, 30 energy efficiency and DSM programs are underway at Entergy.
W9. Verification

W9.1

(W9.1) Do you verify any other water information reported in your CDP disclosure (not already covered by W5.1a)?

Yes

W9.1a

(W9.1a) Which data points within your CDP disclosure have been verified, and which standards were used?

<table>
<thead>
<tr>
<th>Disclosure module</th>
<th>Data verified</th>
<th>Verification standard</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>W1 Current state</td>
<td>Water withdrawals- total volumes</td>
<td>Other, please specify Pump curves and run times are used to quantify this.</td>
<td>Methodology explained.</td>
</tr>
<tr>
<td>W1 Current state</td>
<td>Water withdrawals- volume by sources</td>
<td>Other, please specify Pump curves and run times are used to quantify this.</td>
<td>Methodology explained.</td>
</tr>
<tr>
<td>W1 Current state</td>
<td>Water discharges- total volumes</td>
<td>Other, please specify Federal and State NPDES Permit</td>
<td>Standards and methodologies as contained in Federal and State NPDES Permits.</td>
</tr>
<tr>
<td>W1 Current state</td>
<td>Water discharges- volume by destination</td>
<td>Other, please specify Federal and State NPDES Permit</td>
<td>Standards and methodologies as contained in Federal and State NPDES Permits.</td>
</tr>
<tr>
<td>W1 Current state</td>
<td>Water discharge quality data- quality by standard effluent parameters</td>
<td>Other, please specify Federal and State NPDES Permit</td>
<td>Standards and methodologies as contained in Federal and State NPDES Permits.</td>
</tr>
</tbody>
</table>

W10. Sign off

W-FI

(W-FI) Use this field to provide any additional information or context that you feel is relevant to your organization's response. Please note that this field is optional and is not scored.
W10.1

(W10.1) Provide details for the person that has signed off (approved) your CDP water response.

<table>
<thead>
<tr>
<th>Job title</th>
<th>Corresponding job category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Executive Vice President and General Counsel</td>
<td>Other C-Suite Officer</td>
</tr>
</tbody>
</table>

W10.2

(W10.2) Please indicate whether your organization agrees for CDP to transfer your publicly disclosed data on your impact and risk response strategies to the CEO Water Mandate’s Water Action Hub [applies only to W2.1a (response to impacts), W4.2 and W4.2a (response to risks)].

Submit your response

In which language are you submitting your response?

- English

Please confirm how your response should be handled by CDP

<table>
<thead>
<tr>
<th>Please select your submission options</th>
<th>I understand that my response will be shared with all requesting stakeholders</th>
<th>Response permission</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>Yes</td>
<td>Public</td>
</tr>
</tbody>
</table>

Please confirm below

- I have read and accept the applicable Terms