B0. Introduction

B0.1

(W0.1) Give a general description of and introduction to your organization.

Entergy is a Fortune 500 company that powers life for 3 million customers through our operating companies in Arkansas, Louisiana, Mississippi and Texas. We're investing in the reliability and resilience of the energy system while helping our region transition to cleaner, more efficient energy solutions. With roots in our communities for more than 100 years, Entergy is a nationally recognized leader in sustainability and corporate citizenship. Since 2018, we have delivered more than $100 million in economic benefits each year to local communities through philanthropy, volunteerism and advocacy. Entergy is headquartered in New Orleans, Louisiana, and has approximately 12,000 employees.

Led by our board of directors, Entergy maintains a forward-looking environmental management policy that extends beyond a dedication to environmental compliance. Our policy commits us, among other things, to practice sustainability in all that we do, not only through our environmentally responsible behavior, but also through our support of initiatives that promote local, industry, and global prosperity.

Entergy has a strong track record related to water compliance, efficiency, recycling, and optimization. The company has identified Clean Water and Sanitation as one of the United Nations Sustainable Development Goals (SDG) that we can influence. This SDG (#6) focuses on addressing water availability while also managing flood risk, minimizing our water use, and ensuring our compliance with federal, state, and local regulations.

Water is essential to life but can be a risk during extreme weather events. Entergy addresses water availability while also managing flood issues. We look for opportunities to reduce water use in our operations while evaluating water availability and ensuring compliance with federal, state, and local permits and requirements. Fleet modernization minimizes our impact on water as newer plants withdraw significantly less water than our legacy units. Entergy’s new goal to achieve 50% carbon-free energy generating capacity by 2030 will help minimize Entergy’s water consumption, as clean energy sources are less water intensive than fossil fuel plants. We also evaluate water risks from flooding as sea-level rises, coastal erosion, and subsidence in our coastal service area impact our region.

Public reporting of environmental, social, and governance metrics has become increasingly important to our stakeholders. Entergy collects environmental, social and governance (ESG) performance metrics and supporting narratives and discloses them annually in its Integrated Report, Performance Data Table, the Entergy Statistical Report, and Investor Guide, the EEI ESG and American Gas Association templates, and Global Reporting Initiative and Sustainability Accounting Standards Board mapping. These disclosures contain several water-related metrics. These documents are available here –

https://www.entergy.com/sustainability/disclosures/

https://www.entergy.com/investor_relations/annual_publications/

Forward-Looking Information: Entergy’s statements concerning its environmental plans, goals, beliefs, and expectations, including statements regarding its greenhouse gas reduction goals, strategies, and actions it may take to achieve such goals, statements regarding potential technological advances, and other statements of Entergy’s plans, beliefs, or expectations included in this presentation are “forward-looking statements” which apply only as of the dates indicated. Forward-looking statements are subject to a number of risks, uncertainties, and other factors that could cause actual results to differ materially from those expressed or implied in such forward-looking statements, including, among other things, uncertainties associated with regulatory proceedings and other cost recovery mechanisms, operation and relicensing of nuclear facilities, major storms and other catastrophic events, risks associated with executing on our business strategies, effects of changes in laws, regulations or policies, the effects of technological change, including the costs, pace of development, and commercialization of new and emerging technologies, uncertainties and other factors discussed in Entergy’s most recent Annual Report on Form 10-K and subsequent reports and filings made under the Securities Exchange Act of 1934.

Entergy’s interpretation of Equity share for energy resource and greenhouse gas inventory purposes is inclusive of firm contracts and market purchases.

W-EU0.1a

(W-EU0.1a) Which activities in the electric utilities sector does your organization engage in?

Electricity generation
Transmission
Distribution
Other, please specify (1.) Gas storage, transmission and distribution 2.) Smart grids/ demand response 3.) Battery storage 4.) Micro Grids

W-EU0.1b
(W-EU0.1b) For your electricity generation activities, provide details of your nameplate capacity and the generation for each technology.

<table>
<thead>
<tr>
<th>Technology</th>
<th>Nameplate capacity (MW)</th>
<th>% of total nameplate capacity</th>
<th>Gross electricity generation (GWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coal – hard</td>
<td>2325</td>
<td>8.7</td>
<td>8131.39</td>
</tr>
<tr>
<td>Lignite</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Oil</td>
<td>31</td>
<td>0.12</td>
<td>8.75</td>
</tr>
<tr>
<td>Gas</td>
<td>18396</td>
<td>68.86</td>
<td>78598.51</td>
</tr>
<tr>
<td>Biomass</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Waste (non-biomass)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Nuclear</td>
<td>5220</td>
<td>19.54</td>
<td>40969.69</td>
</tr>
<tr>
<td>Fossil-fuel plants fitted with carbon capture and storage</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Geothermal</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Hydroelectric</td>
<td>395</td>
<td>1.48</td>
<td>1060.04</td>
</tr>
<tr>
<td>Wind</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Solar</td>
<td>309</td>
<td>1.15</td>
<td>685.42</td>
</tr>
<tr>
<td>Marine</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Other renewable</td>
<td>12</td>
<td>0.15</td>
<td>265.22</td>
</tr>
<tr>
<td>Other non-renewable</td>
<td>2</td>
<td>0.01</td>
<td>2.01</td>
</tr>
<tr>
<td>Total</td>
<td>26716</td>
<td>100</td>
<td>129621.02</td>
</tr>
</tbody>
</table>

(W0.2) State the start and end date of the year for which you are reporting data.

<table>
<thead>
<tr>
<th>Reporting year</th>
<th>Start date</th>
<th>End date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>January 1 2022</td>
<td>December 31 2022</td>
</tr>
</tbody>
</table>

(W0.3) Select the countries/areas in which you operate.

United States of America

(W0.4) Select the currency used for all financial information disclosed throughout your response.

USD

(W0.5) Select the option that best describes the reporting boundary for companies, entities, or groups for which water impacts on your business are being reported.

Companies, entities or groups in which an equity share is held

(W0.6) Within this boundary, are there any geographies, facilities, water aspects, or other exclusions from your disclosure?

Yes

(W0.6a) Please report the exclusions.

<table>
<thead>
<tr>
<th>Exclusion</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commercial</td>
<td>The quantity of water used in these office buildings is insignificant compared to the amount of water used for Entergy’s power generation operations. Additionally, the water utilized at these office buildings is not supplied from sources susceptible to shortages. Entergy does not monitor water usage at its office buildings.</td>
</tr>
</tbody>
</table>

W0.7
(W0.7) Does your organization have an ISIN code or another unique identifier (e.g., Ticker, CUSIP, etc.)?

<table>
<thead>
<tr>
<th>Indicate whether you are able to provide a unique identifier for your organization.</th>
<th>Provide your unique identifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes, an ISIN code</td>
<td>US29364G1031</td>
</tr>
</tbody>
</table>

W1. Current state

(W1.1) Rate the importance (current and future) of water quality and water quantity to the success of your business.

<table>
<thead>
<tr>
<th>Importance</th>
<th>Frequency of measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vital</td>
<td>Continuously</td>
</tr>
<tr>
<td>Important</td>
<td>Continuously</td>
</tr>
</tbody>
</table>

- **Sufficient amounts of good quality freshwater available for use**
 - Direct Use: Entergy produces electricity from steam electric power plants that use large amounts of freshwater. 83.01% of Entergy’s power generation fleet utilizes freshwater for cooling, boiler make-up water and house service water needs. The water quantity, quality, biological diversity, and ambient temperatures for each freshwater body are all factors that are vitally important for Entergy’s current and future power plant operations.
 - Indirect Use: Entergy’s suppliers use freshwater to produce various products that are important to company operations. An interruption in supply of freshwater could result in a disruption in product availability. Future water dependency likely will not differ in Entergy’s direct and indirect operations, as this has been the trend observed over recent years.

- **Sufficient amounts of recycled, brackish and/or produced water available for use**
 - Direct Use: ~16.99% of Entergy’s power generation fleet utilizes brackish water for cooling, boiler make-up water and house service water needs. The water quantity, quality, biological diversity, and ambient temperatures for each of these sources are all factors that are important for Entergy’s current and future power plant operations.
 - Indirect Use: Entergy’s suppliers use brackish water to produce various products that are important to company operations. An interruption in supply of these water sources could result in a disruption in product availability. Future water dependency likely will not differ in Entergy’s direct and indirect operations, as this has been the trend observed over recent years.

(W1.2) Across all your operations, what proportion of the following water aspects are regularly measured and monitored?

<table>
<thead>
<tr>
<th>Method of measurement</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>The volume of water withdrawals at the power generation plants is measured either by direct metering or, in many cases, estimated daily, monthly, quarterly, or annually using water pump capacity and run time.</td>
<td>Entergy monitors 100% of its power generation sites for water withdrawals. Other company locations (service centers, office buildings, etc.) are supplied primarily by municipal water sources</td>
</tr>
<tr>
<td>The volume of water withdrawals at the power generation plants are measured either by direct metering or, in many cases, estimated daily, monthly, quarterly, or annually using water pump capacity and run time.</td>
<td>Entergy monitors 100% of its power generation sites for water withdrawals by source. Other company locations (service centers, office buildings, etc.) are supplied primarily by municipal water sources</td>
</tr>
<tr>
<td>Facilities have water meters connected into plant system.</td>
<td>Entergy monitors 100% of its power generation sites for water withdrawals. Entergy monitors its water withdrawals and monitors the quality of such water as required by permits and as needed to support plant chemistry. This data is reported or retained to the extent required by permits or regulations.</td>
</tr>
<tr>
<td>Water discharges – volumes by destination</td>
<td>100%</td>
</tr>
<tr>
<td>Water discharges – volumes by treatment method</td>
<td>100%</td>
</tr>
<tr>
<td>Water discharge quality – by standard effluent parameters</td>
<td>100%</td>
</tr>
<tr>
<td>Water discharge quality – emissions to water (nitrates, phosphates, pesticides, and/or other priority substances)</td>
<td>Not relevant</td>
</tr>
<tr>
<td>Water consumption – total volume</td>
<td>100%</td>
</tr>
<tr>
<td>Water recycled/reused</td>
<td>100%</td>
</tr>
<tr>
<td>The provision of fully-functioning, safely managed WASH services to all workers</td>
<td>100%</td>
</tr>
</tbody>
</table>

W-EU1.2a

For your hydropower operations, what proportion of the following water aspects are regularly measured and monitored?

<table>
<thead>
<tr>
<th>% of sites/facilities/operations measured and monitored</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fulfillment of downstream environmental flows</td>
<td>100%</td>
</tr>
<tr>
<td>Sediment loading</td>
<td>100%</td>
</tr>
<tr>
<td>Other, please specify</td>
<td>Not relevant</td>
</tr>
</tbody>
</table>
(W1.2b) What are the total volumes of water withdrawn, discharged, and consumed across all your operations, how do they compare to the previous reporting year, and how are they forecasted to change?

<table>
<thead>
<tr>
<th>Volume (megaliters/year)</th>
<th>Comparison with previous reporting year</th>
<th>Primary reason for comparison with previous reporting year</th>
<th>Five-year forecast</th>
<th>Primary reason for forecast</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total withdrawals</td>
<td>7154185.6</td>
<td>About the same</td>
<td>Increase/decrease in business activity</td>
<td>Other, please specify (Gradual decrease in water withdrawal based on portfolio transformation)</td>
<td>Total water withdrawn by Entergy facilities in 2022 was 4% higher than 2021 and is considered "about the same" and in line with historical fluctuations from generation, maintenance, and climate. Additionally, Entergy is reporting 5 sites not reflected in our 2021 response, totaling 192,367.59 megaliters of water. Yearly changes less than 5 percent were considered "about the same." Changes between 5% and 25% were considered "higher" or "lower." Year-to-year changes greater than 25% were considered "much higher"/"much lower." Future volumes are not expected to vary greatly based on generation projections.</td>
</tr>
<tr>
<td>Total discharges</td>
<td>7020865</td>
<td>Lower</td>
<td>Increase/decrease in business activity</td>
<td>Other, please specify (Gradual decrease in water discharge based on portfolio transformation)</td>
<td>Total water discharged by Entergy facilities in 2022 was 14.17% less than 2021 and is considered "lower" and in line with historical fluctuations from generation, maintenance, and climate. This was due in part to the addition of 5 sites not reflected in our 2021 response. Yearly changes less than 5 percent were considered "about the same." Changes between 5% and 25% were considered "higher" or "lower." Year-to-year changes greater than 25% were considered "much higher"/"much lower." Future volumes are not expected to vary greatly based on generation projections.</td>
</tr>
<tr>
<td>Total consumption</td>
<td>133580.4</td>
<td>Lower</td>
<td>Divestment from water intensive technology/process</td>
<td>Other, please specify (Gradual decrease in water consumption based on portfolio transformation)</td>
<td>The total water consumed by Entergy facilities in 2022 was 18.61% less than in 2021, which is considered "lower" and in line with historical fluctuations from generation, maintenance, and climate. Changes between 5% and 25% were considered "higher" or "lower." Year-to-year changes greater than 25% were considered "much higher"/"much lower." Future volumes are not expected to vary greatly based on generation projections.</td>
</tr>
</tbody>
</table>

W1.2d

(W1.2d) Indicate whether water is withdrawn from areas with water stress, provide the proportion, how it compares with the previous reporting year, and how it is forecasted to change.

<table>
<thead>
<tr>
<th>Withdrawals are from areas with water stress</th>
<th>% withdrawn from areas with water stress</th>
<th>Comparison with previous reporting year</th>
<th>Primary reason for comparison with previous reporting year</th>
<th>Five-year forecast</th>
<th>Primary reason for forecast</th>
<th>Identification tool</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>Less than 1%</td>
<td>About the same</td>
<td>Maximum potential volume reduction already achieved</td>
<td>About the same</td>
<td>Maximum potential volume reduction already achieved</td>
<td>WRI Aqueduct</td>
<td>The Lewis Creek Power Plant and Montgomery County Power Station ("MCPS") in Montgomery County, Texas, are the only Entergy power plants that operate in a water-constrained area. Even this area is not classified as water-stressed as defined by sustainability analyst RobecoSAM and the DJSI; however, the facility is in Montgomery County, Texas, in the Lone Star Groundwater Conservation District ("LSGCD"), an area identified as water-constrained due to a current water use exceeding the local aquifer’s sustainable yield by ~20% (25 billion gallons use vs. 21 billion gallons yield). The World Resource’s Aqueduct water risk atlas also notes that this area is categorized as medium to high risk based on physical quantity, quality, regulatory and reputational risk categories. Entergy undertook a long-term strategic study of water availability for its Lewis Creek Plant. The study included analysis of the groundwater wells and water plant system. In conjunction with the LSGCD, the facility developed and executed a plan to reduce water withdrawal by 30% through process design changes. By working with the district to optimize water use and leveraging best practices, Lewis Creek continues to utilize at least 30% less water than originally permitted. Existing Lewis Creek units use a large non-public reservoir for cooling water and heat dissipation. This system is closed cycle except for necessary makeup due to evaporation, which is taken from surface water, not the stressed ground water resource. The Montgomery County Power Station began commercial operation in 2020. However, MCPS utilizes the existing Lewis Creek reservoir for cooling water and heat dissipation and does not use ground water resources.</td>
</tr>
</tbody>
</table>

W1.2h
W1.2h Provide total water withdrawal data by source.

<table>
<thead>
<tr>
<th>Relevance</th>
<th>Volume (megaliters/year)</th>
<th>Comparison with previous reporting year</th>
<th>Primary reason for comparison with previous reporting year</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fresh surface water, including rainwater, water from wetlands, rivers, and lakes</td>
<td>Relevant</td>
<td>5744287</td>
<td>About the same</td>
<td>Other, please specify (Remain as the same)</td>
</tr>
<tr>
<td>Brackish surface water/seawater</td>
<td>Relevant</td>
<td>140989</td>
<td>About the same</td>
<td>Other, please specify (Remain as the same)</td>
</tr>
<tr>
<td>Groundwater – renewable</td>
<td>Relevant</td>
<td>34496</td>
<td>Much lower</td>
<td>Increase/decrease in business activity</td>
</tr>
<tr>
<td>Groundwater – non-renewable</td>
<td>Not relevant</td>
<td><Not Applicable></td>
<td><Not Applicable></td>
<td>Entergy did not withdraw water from non-renewable groundwater sources during 2022, which was also the case for the previous year. Entergy does not expect future operations to change and for water to be withdrawn from this source</td>
</tr>
<tr>
<td>Produced/Entrained water</td>
<td>Not relevant</td>
<td><Not Applicable></td>
<td><Not Applicable></td>
<td>Entergy did not withdraw water from produced/entained sources during 2022, which was also the case for the previous year. Entergy does not expect future operations to change and for water to be withdrawn from this source</td>
</tr>
<tr>
<td>Third party sources</td>
<td>Relevant</td>
<td>13553</td>
<td>Higher</td>
<td>Increase/decrease in business activity</td>
</tr>
</tbody>
</table>

W1.2j Within your direct operations, indicate the highest level(s) to which you treat your discharge.

<table>
<thead>
<tr>
<th>Relevance</th>
<th>Volume (megaliters/year)</th>
<th>Comparison to previous reporting year</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freshwater discharge between 2021 and 2022 was 2% less, which is considered 'about the same.' The closure of the Palisades nuclear plant in May 2022 contributed to decreased water discharges. Changes between 5% and 25% were considered "higher" or "lower." Year-to-year changes greater than 25% were considered "much higher" or "much lower." Future volumes are not expected to vary greatly based on generation projections.</td>
<td>5613023.28</td>
<td>About the same</td>
<td>Increase/decrease in business activity</td>
</tr>
<tr>
<td>Brackish discharge between 2021 and 2022 decreased by over 100%, which is considered 'much lower.' The closure of nuclear facility Indian Point mid-2021 that discharged significantly to brackish sources affected the year-over-year comparison. Changes between 5% and 25% were considered "higher" or "lower." Year-to-year changes greater than 25% were considered "much higher" or "much lower." Future volumes are not expected to vary greatly based on generation projections.</td>
<td>47.61</td>
<td>Divestment from water intensive technology/process</td>
<td>Divestment from water intensive technology/process</td>
</tr>
<tr>
<td>Entergy did not discharge water to third-party destinations without treatment during 2022, which was also the case for the previous year. Entergy facilities did not discharge water to third-party destinations without treatment during 2022, which was also the case for the previous year. Entergy facilities did not discharge water to third-party destinations without treatment during 2022, which was also the case for the previous year.</td>
<td><Not Applicable></td>
<td><Not Applicable></td>
<td><Not Applicable></td>
</tr>
<tr>
<td>Entergy did not discharge water to groundwater destinations during 2022, which was also the case for the previous year. Entergy does not expect future operations to change and for water to be withdrawn from this source.</td>
<td><Not Applicable></td>
<td><Not Applicable></td>
<td><Not Applicable></td>
</tr>
<tr>
<td>Entergy did not discharge water to third-party destinations during 2022, which was also the case for the previous year. Entergy does not expect future operations to change and for water to be withdrawn from this source.</td>
<td><Not Applicable></td>
<td><Not Applicable></td>
<td><Not Applicable></td>
</tr>
</tbody>
</table>

W1.2i Provide total water discharge data by destination.

<table>
<thead>
<tr>
<th>Relevance</th>
<th>Volume (megaliters/year)</th>
<th>Comparison to previous reporting year</th>
<th>Primary reason for comparison to previous reporting year</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fresh surface water</td>
<td>Relevant</td>
<td>5613023.28</td>
<td>About the same</td>
<td>Increase/decrease in business activity</td>
</tr>
<tr>
<td>Brackish surface water/seawater</td>
<td>Relevant</td>
<td>47.61</td>
<td>Much lower</td>
<td>Divestment from water intensive technology/process</td>
</tr>
<tr>
<td>Groundwater</td>
<td>Not relevant</td>
<td><Not Applicable></td>
<td><Not Applicable></td>
<td>Entergy did not withdraw water from groundwater destinations during 2022, which was also the case for the previous year. Entergy does not expect future operations to change and for water to be withdrawn from this source.</td>
</tr>
<tr>
<td>Third party destinations</td>
<td>Not relevant</td>
<td><Not Applicable></td>
<td><Not Applicable></td>
<td>Entergy did not discharge water to third-party destinations during 2022, which was also the case for the previous year. Entergy does not expect future operations to change and for water to be withdrawn from this source.</td>
</tr>
</tbody>
</table>

W1.2j Within your direct operations, indicate the highest level(s) to which you treat your discharge.

<table>
<thead>
<tr>
<th>Relevance</th>
<th>Volume (megaliters/year)</th>
<th>Comparison to previous reporting year</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tertiary treatment</td>
<td>Relevant</td>
<td>11935.03</td>
<td>About the same</td>
</tr>
<tr>
<td>Secondary treatment</td>
<td>Relevant</td>
<td>7020.61</td>
<td>Higher</td>
</tr>
<tr>
<td>Primary treatment only</td>
<td>Relevant</td>
<td>46335.99</td>
<td>About the same</td>
</tr>
<tr>
<td>Discharge to the natural environment without treatment</td>
<td>Relevant</td>
<td>Please select</td>
<td>Please select</td>
</tr>
<tr>
<td>Discharge to a third party without treatment</td>
<td>Not relevant</td>
<td><Not Applicable></td>
<td><Not Applicable></td>
</tr>
<tr>
<td>Other</td>
<td>Relevant</td>
<td>3510.3</td>
<td>About the same</td>
</tr>
</tbody>
</table>
W1.3

(W1.3) Provide a figure for your organization’s total water withdrawal efficiency.

<table>
<thead>
<tr>
<th>Revenue</th>
<th>Total water withdrawal volume (megaliters)</th>
<th>Total water withdrawal efficiency</th>
<th>Anticipated forward trend</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row 1</td>
<td>1376423700 0</td>
<td>7154186</td>
<td>1823.9/173/145624</td>
</tr>
</tbody>
</table>

As Entergy works to increase its fleet of low water impact technologies, we expect to see this number gradually increase.

W-EU1.3

(W-EU1.3) Do you calculate water intensity for your electricity generation activities?

Yes

W-EU1.3a

(W-EU1.3a) Provide the following intensity information associated with your electricity generation activities.

<table>
<thead>
<tr>
<th>Water intensity value (m3/denominator)</th>
<th>Numerator aspect</th>
<th>Denominator</th>
<th>Comparison with previous reporting year</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>44.31</td>
<td>Total water withdrawals</td>
<td>MWh</td>
<td>Lower</td>
<td>Water intensity value (m3) in 2022 was 44.315 m3/MWh (net), indicating a 23% decrease from last year. This value is determined based on total water withdrawals and total net generation from Entergy-owned and operated generating assets. Entergy tracks water intensity internally and works to reduce water intensity year by year. Based on future generation projections, Entergy’s water intensity is not expected to increase. Entergy plans to invest over $16 billion (as of February 2022) in capital over the next three years (2023E to 2025E) in generation assets and transmission and distribution infrastructure. Initiated in 2002, Entergy’s portfolio transformation strategy incorporates cleaner, more efficient generation sources, allowing for the retirement of older, less efficient legacy units. This proposed fleet modernization is expected to significantly reduce Entergy’s water withdrawal volumes, as these newer plants would withdraw significantly less water than our legacy units.</td>
</tr>
</tbody>
</table>

W1.4

(W1.4) Do any of your products contain substances classified as hazardous by a regulatory authority?

<table>
<thead>
<tr>
<th>Products contain hazardous substances</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row 1</td>
<td>No</td>
</tr>
</tbody>
</table>

W1.5

(W1.5) Do you engage with your value chain on water-related issues?

<table>
<thead>
<tr>
<th>Suppliers</th>
<th>Engagement</th>
<th>Primary reason for no engagement</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Yes</td>
<td><Not Applicable></td>
<td><Not Applicable></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Other value chain partners (e.g., customers)</th>
<th>Engagement</th>
<th>Primary reason for no engagement</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No</td>
<td>Please select</td>
<td></td>
</tr>
</tbody>
</table>

W1.5a

(W1.5a) Do you assess your suppliers according to their impact on water security?

Row 1

Assessment of supplier impact

No, we do not currently assess the impact of our suppliers, but we plan to do so within the next two years

Considered in assessment

<Not Applicable>

Number of suppliers identified as having a substantive impact

<Not Applicable>

% of total suppliers identified as having a substantive impact

<Not Applicable>

Please explain
W1.5b

(W1.5b) Do your suppliers have to meet water-related requirements as part of your organization’s purchasing process?

<table>
<thead>
<tr>
<th>Suppliers have to meet specific water-related requirements</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row 1: No, and we do not plan to introduce water-related requirements within the next two years</td>
<td>We are not currently including this in our requirements.</td>
</tr>
</tbody>
</table>

W1.5d

(W1.5d) Provide details of any other water-related supplier engagement activity.

- **Type of engagement:** Information collection
- **Details of engagement:** Collect water management information at least annually from suppliers
 - % of suppliers by number: 1-25
 - % of suppliers with a substantive impact: <Not Applicable>

Rationale for your engagement: Annual supplier ESG assessments

Impact of the engagement and measures of success: Strategic suppliers completing the assessment and accounting for 42% of managed spend

Comment: Water/waste management is included in the annual assessment

W2. Business impacts

W2.1

(W2.1) Has your organization experienced any detrimental water-related impacts?

- **No**

W2.2

(W2.2) In the reporting year, was your organization subject to any fines, enforcement orders, and/or other penalties for water-related regulatory violations?

<table>
<thead>
<tr>
<th>Water-related regulatory violations</th>
<th>Fines, enforcement orders, and/or other penalties</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row 1: No</td>
<td><Not Applicable></td>
<td></td>
</tr>
</tbody>
</table>

W3. Procedures

W3.1

(W3.1) Does your organization identify and classify potential water pollutants associated with its activities that could have a detrimental impact on water ecosystems or human health?

- **Identification and classification of potential water pollutants:** Virtually all of Entergy’s discharges to water are controlled either by state-issued, federally enforceable permits issued under the National Pollutant Discharge Elimination System of the federal Clean Water Act or by similar state programs. Entergy facilities operate under approximately 40,000 specific water pollution control permit requirements. These permits have water quality criteria which have been developed to protect aquatic life, human health and wildlife from the deleterious effects of pollutants. Across our operations, Entergy protects water resources by maintaining a compliance rate with state and federal water pollution control permit requirements of at least 99.9%. Across Entergy’s value chain, impacts related to water vary due to specific state or location-based requirements. However, all policies and processes must meet Entergy’s Water Management Standard, which is part of our broader environmental management system. Entergy manages operational water-related risk compliance and planning primarily through PowerGen Environmental Group and the Power Delivery Environmental Group. Secondarily, environmental compliance and regulatory issues are managed by the Water Peer Group and with trade associations; this peer group is comprised of subject matter experts from each business unit & examine water supply and discharge issues impacting Entergy’s operations, providing a forum to discuss these issues & coordination for path-forward strategies to influence water issues.

- **Please explain:** <Not Applicable>

CDP Page 8 of 62
(W3.1a) Describe how your organization minimizes the adverse impacts of potential water pollutants on water ecosystems or human health associated with your activities.

Water pollutant category
Other, please specify (Hydrocarbons)

Description of water pollutant and potential impacts
A hydrocarbon is a compound of hydrogen and carbon. These are typically the chief components in many types of fuels and products we use every day. They can come in the form of a gas, liquid, solid, or polymers. The exposure or injection of these substances can cause significant health risks. Direct skin contact can happen, causing local skin irritation and, rarely, leading to systemic disease. However, prolonged exposure can lead to tissue breakdown and superficial, partial thickness chemical burns. Severe, full thickness chemical burns can lead to absorption and acute toxic systemic manifestations. Ingestion and inhalation/aspiration of hydrocarbons can also occur, which may signify disease and lead to systemic toxicity and morbidity and mortality. (Curtis J, Metheny E, Sergent SR. Hydrocarbon Toxicity. [Updated 2021 Jan 17]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2021 Jan–)

Value chain stage
Direct operations

Actions and procedures to minimize adverse impacts
Assessment of critical infrastructure and storage condition (leakages, spillages, pipe erosion etc.) and their resilience

Please explain
Hydrocarbon content in discharged water is closely monitored as required by state-issued, federally enforceable permits issued under the National Pollutant Discharge Elimination System of the federal Clean Water Act or by similar state programs. To aid with emergency response in the case of hydrocarbon leakage or spill, the Spill Prevention, Control, and Countermeasure (SPCC) Plans maintained by Entergy facilities, helps facilities prevent oil spills, as well as control a spill should one occur. Stormwater Pollution Prevention Plans (SWPPP) are also maintained by the applicable facilities to outline the specific ways the facilities prevent contamination of water leaving the site as stormwater.

Water pollutant category
Other, please specify (Radiation)

Description of water pollutant and potential impacts
Radiation is the emitted energy coming from a radioactive source that is trying to achieve a stable state by shedding energy. Whereas a radionuclide is the actual contaminant. It comes from radioactive elements, natural and manmade, whose atoms are unstable. Radiation is measured in units called millirems. A millirem is a unit used to measure radiation dose in humans. For radiation to cause any measurable biological effect in human beings, most scientists agree that the exposure must reach about 25,000 millirems – in a single, short-time exposure. Per the US EPA, exposure to very high levels of radiation can cause acute health effects such as skin burns and acute radiation syndrome (“radiation sickness”). It can also result in long-term health effects such as cancer and cardiovascular disease. https://perma.cc/KCC3-NNBB

Value chain stage
Direct operations

Actions and procedures to minimize adverse impacts
Assessment of critical infrastructure and storage condition (leakages, spillages, pipe erosion etc.) and their resilience

Please explain
Federal standards set and enforced by the Nuclear Regulatory Commission (NRC), and with which Entergy ensures strict compliance, require that workers at nuclear power plants receive no more than 5,000 millirems of radiation a year. Entergy has comprehensive policies and procedures that govern the permitted release of radioactive effluents; the conduct of work involving radioactivity including spill prevention and mitigation; and the storage, containerization, and disposal of such material such that there will be no measurable impact to the environment. This includes the use of risk assessment guidance and challenge meetings when planning and conducting work that involves interaction with radioactive components, liquids, and gasses. Additionally, a separate program of monitoring for the impact of nuclear power plant operational impacts on the community is conducted at each site. Lastly, the NRC conducts periodic inspections of the procedures processes and outcomes.

Water pollutant category
Other, please specify (Thermal Production)

Description of water pollutant and potential impacts
Thermal water pollution is the degradation of water quality due to a change in ambient water temperature. Multiple issues occur concurrently when heated water is released to an aquatic ecosystem. The most immediate change is a decrease in dissolved oxygen levels and rise in pH. Warm water cannot hold as much dissolved oxygen as cold water, and organic matter decomposes faster in warmer temperatures. The increase in decomposed aqueous nutrient concentrations causes eutrophication, most commonly realized as algae blooms, which block sunlight for underlying aquatic plants. Additionally, rapidly heated water accelerates the metabolism of cold-blooded aquatic animals like fish, causing malnutrition due to insufficient food sources. Since the environment usually becomes more inhospitable to the area’s aquatic fauna, many species leave while more vulnerable species may die, changing the biodiversity of both the original and invaded locations. (Brandon C, Thermal Water Pollution from Nuclear Power Plants)

Value chain stage
Direct operations

Actions and procedures to minimize adverse impacts
Provision of best practice instructions on product use

Please explain
Water temperature in discharged water is closely monitored as required by state-issued, federally enforceable permits under the National Pollutant Discharge Elimination System of the federal Clean Water Act or by similar state programs. At many facilities the temperature of the water is monitored continuously during discharge, with alarms on the system which indicate if the temperature of the discharge water raises to near permitted limits. Occasionally surface water temperature rises to a point where a facility will need to power down, showing a priority of the quality of discharge water over production. Entergy monitors and responds to these situations as it would a physical interruption in the water supply. As we build our more modern facilities, the volume of water we discharge and any potential water thermal discharge issues are a factor in design considerations such as cooling towers, recirculation cooling ponds, and condenser sizing, each of which can mitigate this risk in appropriate circumstances.
Water pollutant category
Other, please specify (Coal Combustion Residuals)

Description of water pollutant and potential impacts
Per the US EPA website, Coal combustion residuals, commonly known as coal ash, are created when coal is burned by power plants to produce electricity. Coal ash is one of the largest types of industrial waste generated in the United States. In 2012, 470 coal-fired electric utilities generated about 110 million tons of coal ash. Coal ash contains contaminants like mercury, cadmium and arsenic. Without proper management, these contaminants can pollute waterways, ground water, drinking water, and the air. If eaten, drunk or inhaled, these toxicants can cause cancer and nervous system impacts such as cognitive deficits, developmental delays and behavioral problems. They can also cause heart damage, lung disease, respiratory distress, kidney disease, reproductive problems, gastrointestinal illness, birth defects, and impaired bone growth in children.

Value chain stage
Direct operations

Actions and procedures to minimize adverse impacts
Provision of best practice instructions on product use

Please explain
In April 2015, the EPA published the final CCR rule regulating CCRs destined for disposal in landfills or surface impoundments as non-hazardous wastes regulated under RCRA Subtitle D. The final regulations created new compliance requirements including modified storage, new notification and reporting practices, product disposal considerations, and CCR unit closure criteria but excluded CCRs that are beneficially reused in certain processes. Entergy operates groundwater monitoring systems surrounding its coal combustion residual landfills located at three sites and has met the April 2021 deadline under the finalized CCR rule for unlined recycle ponds. Additionally, all three sites are preparing to implement measures to meet the new and updated Effluent Limitation Guidelines (ELGs) that are expected to go into effect in the next one to two years. A final ELG rule is expected by mid-2024. In May 2023, the EPA released a proposed rule establishing management standards for legacy CCR surface impoundments (i.e., inactive surface impoundments at inactive power plants) and establishing a new class of units referred to as CCR management units (i.e., non-containerized CCR located at a regulated CCR facility). Entergy does not have any legacy impoundments; however, the proposed definition of CCR management units appears to regulate on-site areas where CCR was beneficially used. This is contrary to the current CCR Rule which exempts beneficial uses that meet certain criteria.

W3.3

(W3.3) Does your organization undertake a water-related risk assessment?
Yes, water-related risks are assessed

W3.3a

(W3.3a) Select the options that best describe your procedures for identifying and assessing water-related risks.

- **Value chain stage**
 - Direct operations

- **Coverage**
 - Full

- **Risk assessment procedure**
 - Water risks are assessed as part of an established enterprise risk management framework

- **Frequency of assessment**
 - More than once a year

- **How far into the future are risks considered?**
 - 3 to 6 years

- **Type of tools and methods used**
 - Enterprise risk management

- **Tools and methods used**
 - Enterprise Risk Management

- **Contextual issues considered**
 - Water availability at a basin/catchment level
 - Water quality at a basin/catchment level
 - Stakeholder conflicts concerning water resources at a basin/catchment level
 - Implications of water on your key commodities/raw materials
 - Water regulatory frameworks
 - Status of ecosystems and habitats
 - Access to fully-functioning, safely managed WASH services for all employees

- **Stakeholders considered**
 - Customers
 - Employees
 - Investors
 - Local communities
 - NGOs
 - Regulators
 - Suppliers
 - Water utilities at a local level
 - Other water users at the basin/catchment level
 - Other, please specify (River Basin Management authorities, Statutory special interest groups at a local level)
Entergy uses an Enterprise Risk Management (ERM) program to identify, capture, and mitigate risks that would impede Supply Chain and the rest of Entergy from accomplishing its objectives. Facilitated sessions are conducted across the Company with each business leader, along with knowledgeable financial and operational personnel from each group. Since the original implementation of ERM, Internal Audit continues to monitor the functional groups with updating their risk profile. Entergy has identified water as a "Risk Factor" in its public disclosures and this risk is described in Entergy’s Annual Report on Form 10-K and is evaluated/updated on a quarterly basis. Additionally, the Water Peer Group, which includes representatives from all of Entergy’s business functions, monitors water stressed areas on at least an annual basis using the WRI Aqueduct map and data or similar resources. Some suppliers are not included in this assessment if they are judged to not be material users of water. Additionally, in 2021, Entergy corporate controls for managing risks were the EMS Policy and EMS Procedure. Entergy’s EMS policy establishes that business units identify and assess risks, including water supply and water quality that could impact their direct operations.

Value chain stage
Supply chain

Coverage
Full

Risk assessment procedure
Water risks are assessed as part of an established enterprise risk management framework

Frequency of assessment
More than once a year

How far into the future are risks considered?
3 to 6 years

Type of tools and methods used
Enterprise risk management

Tools and methods used
Enterprise Risk Management

Contextual issues considered
Water availability at a basin/catchment level
Water quality at a basin/catchment level
Stakeholder conflicts concerning water resources at a basin/catchment level
Implications of water on your key commodities/raw materials
Water regulatory frameworks
Status of ecosystems and habitats
Access to fully-functioning, safely managed WASH services for all employees

Stakeholders considered
Customers
Employees
Investors
Local communities
NGOs
Regulators
Suppliers
Water utilities at a local level
Other water users at the basin/catchment level
Other, please specify (River Basin Management authorities, Statutory special interest groups at a local level)

Comment
Entergy uses an Enterprise Risk Management (ERM) program to identify, capture, and mitigate risks that would impede Supply Chain and the rest of Entergy from accomplishing its objectives. Facilitated sessions are conducted across the Company with each business leader, along with knowledgeable financial and operational personnel from each group. Since the original implementation of ERM, Internal Audit continues to monitor the functional groups with updating their risk profile. Entergy has identified water as a "Risk Factor" in its public disclosures and this risk is described in Entergy’s Annual Report on Form 10-K and is evaluated/updated on a quarterly basis. Additionally, the Water Peer Group, which includes representatives from all of Entergy’s business functions, monitors water stressed areas on at least an annual basis using the WRI Aqueduct map and data or similar resources. Some suppliers are not included in this assessment if they are judged to not be material users of water.
W4. Risks and opportunities

W4.1

(W4.1) Have you identified any inherent water-related risks with the potential to have a substantive financial or strategic impact on your business?

Yes, both in direct operations and the rest of our value chain

W4.1a

(W4.1a) How does your organization define substantive financial or strategic impact on your business?

Entergy views the potential substantive financial impacts of water risk as an issue that warrants SEC disclosure. The measure(s) used in the definition of substantive impact is a) any water risk issue potentially resulting in a compliance violation, permit exceedance, or breach of an agreement, or b) any physical water risk that could interrupt the operation of power plants. The threshold used is a change in the metric/measure/indicator, which indicates the substantive impact on direct operations, supply chain, or both. Thresholds vary by indicator. For example, any single permit exceedance would likely not meet the threshold for that indicator; however, taken in aggregate, they may or may not represent a substantive or financial impact. The frequency and process for review: The metrics and thresholds above are reviewed or updated and reported quarterly, first through the Water Peer Group and subject matter experts, then again reviewed during the Enterprise Risk Management Process (ERM).

W4.1b

(W4.1b) What is the total number of facilities exposed to water risks with the potential to have a substantive financial or strategic impact on your business, and what proportion of your company-wide facilities does this represent?

<table>
<thead>
<tr>
<th>Total number of facilities exposed to water risk</th>
<th>% company-wide facilities this represents</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row 1 25</td>
<td>51-75</td>
<td>Includes the following Facilities - White Bluff, Independence, Hot Spring, Union Power, Lake Catherine, Ouachita, Nelson, Waterford 1 & 2, Lake Charles, J. Wayne Leonard, Little Gypsy, Nine Mile Point, Nine Mile II, Pennyville, Baxter Wilson, Gerald Andrus, Attala, Lewis Creek, Montgomery County, Sabine, Arkansas Nuclear One, Grand Gulf, Palisades, River Bend, and Waterford 3</td>
</tr>
</tbody>
</table>

W4.1c

(W4.1c) By river basin, what is the number and proportion of facilities exposed to water risks that could have a substantive financial or strategic impact on your business, and what is the potential business impact associated with those facilities?

<table>
<thead>
<tr>
<th>Country/Area & River basin</th>
<th>Number of facilities exposed to water risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>United States of America</td>
<td>10</td>
</tr>
<tr>
<td>Mississippi River</td>
<td></td>
</tr>
</tbody>
</table>

% company-wide facilities this represents
Production value for the metals & mining activities associated with these facilities
<Not Applicable>

% company’s annual electricity generation that could be affected by these facilities
1-25

% company’s global oil & gas production volume that could be affected by these facilities
<Not Applicable>

% company’s total global revenue that could be affected
Less than 1%

Comment
Includes 1.) and 2.) Waterford 1 & 2 3.) Wayne Leonard (SCPS) 4.) Little Gypsy 5.) Ninemile Point 6.) Baxter Wilson 7.) Grand Gulf 8.) River Bend 9.) Waterford 3 10.) Gerald Andrus.

Entergy’s regulated electric utility business derives revenue from electric generation, transmission, and distribution, subject to state and local rate regulation. Should one of Entergy’s generation facilities encounter a water shortage or quality issue, any power reduction would be supplemented or replaced by other available power sources. Entergy has a duty to serve the load requirements of our customers, so there would be no revenue impact.

<table>
<thead>
<tr>
<th>Country/Area & River basin</th>
<th>United States of America</th>
<th>Other, please specify (Arkansas River)</th>
</tr>
</thead>
</table>

Number of facilities exposed to water risk
2

% company-wide facilities this represents
1-25

Production value for the metals & mining activities associated with these facilities
<Not Applicable>

% company’s annual electricity generation that could be affected by these facilities
1-25

% company’s global oil & gas production volume that could be affected by these facilities
<Not Applicable>

% company’s total global revenue that could be affected
Less than 1%

Comment
Includes 1.) Arkansas Nuclear One and 2.) White Bluff

Entergy’s regulated electric utility business derives revenue from electric generation, transmission, and distribution, subject to state and local rate regulation. Should one of Entergy’s generation facilities encounter a water shortage or quality issue, any power reduction would be supplemented or replaced by other available power sources. Entergy has a duty to serve the load requirements of our customers, so there would be no revenue impact.

<table>
<thead>
<tr>
<th>Country/Area & River basin</th>
<th>United States of America</th>
<th>Other, please specify (Ouachita River)</th>
</tr>
</thead>
</table>

Number of facilities exposed to water risk
5

% company-wide facilities this represents
1-25

Production value for the metals & mining activities associated with these facilities
<Not Applicable>

% company’s annual electricity generation that could be affected by these facilities
1-25

% company’s global oil & gas production volume that could be affected by these facilities
<Not Applicable>

% company’s total global revenue that could be affected
Less than 1%

Comment
Includes 1.) Hot Spring 2.) Ouachita 3.) Union Power 4.) Perryville and 5.) Lake Catherine

Entergy’s regulated electric utility business derives revenue from electric generation, transmission, and distribution, subject to state and local rate regulation. Should one of Entergy’s generation facilities encounter a water shortage or quality issue, any power reduction would be supplemented or replaced by other available power sources. Entergy has a duty to serve the load requirements of our customers, so there would be no revenue impact.

<table>
<thead>
<tr>
<th>Country/Area & River basin</th>
<th>United States of America</th>
<th>Other, please specify (San Jacinto River (Lewis Creek Reservoir))</th>
</tr>
</thead>
</table>
Number of facilities exposed to water risk
1
% company-wide facilities this represents
1-25

Production value for the metals & mining activities associated with these facilities
<Not Applicable>
% company’s annual electricity generation that could be affected by these facilities
1-25
% company’s global oil & gas production volume that could be affected by these facilities
<Not Applicable>
% company’s total global revenue that could be affected
Less than 1%

Comment
Includes 1.) Lewis Creek

Entergy’s regulated electric utility business derives revenue from electric generation, transmission, and distribution, subject to state and local rate regulation. Should one of Entergy’s generation facilities encounter a water shortage or quality issue, any power reduction would be supplemented or replaced by other available power sources. Entergy has a duty to serve the load requirements of our customers, so there would be no revenue impact.

Country/Area & River basin

<table>
<thead>
<tr>
<th>United States of America</th>
<th>Other, please specify (White River)</th>
</tr>
</thead>
</table>

Number of facilities exposed to water risk
1
% company-wide facilities this represents
1-25

Production value for the metals & mining activities associated with these facilities
<Not Applicable>
% company’s annual electricity generation that could be affected by these facilities
1-25
% company’s global oil & gas production volume that could be affected by these facilities
<Not Applicable>
% company’s total global revenue that could be affected
Less than 1%

Comment
Includes 1.) Independence

Entergy’s regulated electric utility business derives revenue from electric generation, transmission, and distribution, subject to state and local rate regulation. Should one of Entergy’s generation facilities encounter a water shortage or quality issue, any power reduction would be supplemented or replaced by other available power sources. Entergy has a duty to serve the load requirements of our customers, so there would be no revenue impact.

Country/Area & River basin

<table>
<thead>
<tr>
<th>United States of America</th>
<th>Sabine River</th>
</tr>
</thead>
</table>

Number of facilities exposed to water risk
3
% company-wide facilities this represents
1-25

Production value for the metals & mining activities associated with these facilities
<Not Applicable>
% company’s annual electricity generation that could be affected by these facilities
1-25
% company’s global oil & gas production volume that could be affected by these facilities
<Not Applicable>
% company’s total global revenue that could be affected
Less than 1%

Comment
Includes 1.) Nelson 2.) Sabine and 3.) Lake Charles

Entergy’s regulated electric utility business derives revenue from electric generation, transmission, and distribution, subject to state and local rate regulation. Should one of Entergy’s generation facilities encounter a water shortage or quality issue, any power reduction would be supplemented or replaced by other available power sources. Entergy has a duty to serve the load requirements of our customers, so there would be no revenue impact.
Number of facilities exposed to water risk
1

% company-wide facilities this represents
1-25

Production value for the metals & mining activities associated with these facilities
<Not Applicable>

% company’s annual electricity generation that could be affected by these facilities
1-25

% company’s global oil & gas production volume that could be affected by these facilities
<Not Applicable>

% company’s total global revenue that could be affected
Less than 1%

Comment
Includes 1.) Attala

Entergy’s regulated electric utility business derives revenue from electric generation, transmission, and distribution, subject to state and local rate regulation. Should one of Entergy’s generation facilities encounter a water shortage or quality issue, any power reduction would be supplemented or replaced by other available power sources. Entergy has a duty to serve the load requirements of our customers, so there would be no revenue impact.

Country/Area & River basin
United States of America | St. Lawrence

Number of facilities exposed to water risk
1

% company-wide facilities this represents
1-25

Production value for the metals & mining activities associated with these facilities
<Not Applicable>

% company’s annual electricity generation that could be affected by these facilities
1-25

% company’s global oil & gas production volume that could be affected by these facilities
<Not Applicable>

% company’s total global revenue that could be affected
1-10

Comment
Includes 1.) Palisades

Entergy’s Palisades plant sold power under an established power purchase agreement for part of 2022 and was deactivated in May 2022. Entergy sold the plant to a third-party.

W4.2

(W4.2) Provide details of identified risks in your direct operations with the potential to have a substantive financial or strategic impact on your business, and your response to those risks.

Country/Area & River basin
United States of America | Mississippi River

Type of risk & Primary risk driver
Regulatory | Lack of transparency of water rights

Primary potential impact
Fines, penalties or enforcement orders

Company-specific description
Virtually all of Entergy’s discharges to water are controlled either by state-issued, federally enforceable permits issued under the National Pollutant Discharge Elimination System of the federal Clean Water Act or by similar state programs. In addition, Entergy facilities operate under approximately 40,000 specific water pollution control permit requirements. If a permit requirement is in exceedance, depending on the severity of the violation, monetary fines and fees can be imposed on the power plants.

Timeframe
Current up to one year
Magnitude of potential impact
Low

Likelihood
Unlikely

Are you able to provide a potential financial impact figure?
Yes, an estimated range

Potential financial impact figure (currency)
<Not Applicable>

Potential financial impact figure - minimum (currency)
1000

Potential financial impact figure - maximum (currency)
27500

Explanation of financial impact
Depending on the exceedance of the permit requirement, the fine issued to the power plant may vary based on the duration and severity of the violation. Incurring a penalty or fine for permit noncompliance would be rare for Entergy, as across our operations, Entergy has maintained a compliance rate with state and federal water pollution control permit requirements of at least 99.9% from year to year.

Primary response to risk
Other, please specify (Internal Procedures and Policy)

Description of response
Entergy maintains a robust environmental compliance program, and water stewardship is an integral part of the company's environmental policies. Compliance with all state-issued, federally enforceable permits are tracked internally, and Entergy also makes this information publicly available.

https://www.entergy.com/userfiles/content/sustainability/performance_data_table.pdf

These practices and a strong commitment to environmental compliance have led Entergy to maintain a compliance rate with state and federal water pollution control permit requirements of at least 99.99% from year to year.

Cost of response
Explanation of cost of response
The cost of response is associated with a third-party compliance EHS auditing program. Water permit compliance is one of many regulatory obligations examined during these audits.

Country/Area & River basin

| United States of America | Mississippi River |

Type of risk & Primary risk driver

| Acute physical | Flood (coastal, fluvial, pluvial, groundwater) |

Primary potential impact
Reduction or disruption in production capacity

Company-specific description
River flooding which curtails operations at the power plants.

Timeframe
Unknown

Magnitude of potential impact
Low

Likelihood
Likely

Are you able to provide a potential financial impact figure?
No, we do not have this figure

Potential financial impact figure (currency)
<Not Applicable>

Potential financial impact figure - minimum (currency)
<Not Applicable>

Potential financial impact figure - maximum (currency)
<Not Applicable>

Explanation of financial impact
Primary response to risk
Other, please specify (Shift energy production)

Description of response
Shift energy production to other reserve units until river levels subside.

Cost of response
Explanation of cost of response
Financial investment will depend on the specific project, unable to estimate at this time. Implementation costs vary considerably based on level of process change option selected.

Country/Area & River basin

| United States of America | Mississippi River |

Type of risk & Primary risk driver

| Regulatory | Regulatory uncertainty |

Primary potential impact

Other, please specify (Delays in permitting)

Company-specific description

Entergy's ability to operate is contingent upon the receipt of relevant regulatory permits and permissions. This ability may be compromised if the relevant regulatory agencies do not issue needed permits.

Timeframe

Unknown

Magnitude of potential impact

Unknown

Likelihood

Likely

Are you able to provide a potential financial impact figure?

No, we do not have this figure

Potential financial impact figure (currency)

<Not Applicable>

Potential financial impact figure - minimum (currency)

<Not Applicable>

Potential financial impact figure - maximum (currency)

<Not Applicable>

Explanation of financial impact

Engage with regulators/policymakers

Description of response

Entergy keeps abreast of the applicable federal, state and local regulatory changes that may affect its operating facilities. Entergy interacts with regulators/policymakers for additional guidance when required.

Cost of response

Financial investment will depend on the specific project, unable to estimate at this time. Implementation costs vary considerably based on level of process change option selected.

Country/Area & River basin

| United States of America | Mississippi River |

Type of risk & Primary risk driver

| Reputation & markets | Community opposition |

Primary potential impact

Other, please specify (Requirement for remediation)

Company-specific description

Entergy's ability to operate is contingent upon the receipt of relevant regulatory permits and permissions. This ability may be compromised if the relevant regulatory agencies and stakeholders do not have confidence in the company's ability to comply with environmental requirements.

Timeframe

1-3 years

Magnitude of potential impact

High

Likelihood

Likely

Are you able to provide a potential financial impact figure?

No, we do not have this figure

Potential financial impact figure (currency)

<Not Applicable>
Description of response
The NRC requires nuclear power plants to regularly monitor and report the presence of radioactive material in the environment. Entergy joined other nuclear utilities and the Nuclear Energy Institute in 2006 to develop a voluntary groundwater monitoring and protection program. This initiative began after detection of very low levels of radioactive material, primarily tritium, in groundwater at several plants in the United States. Tritium is a radioactive form of hydrogen that occurs naturally and is also a by-product of nuclear plant operations. In addition to tritium, other radionuclides have been found in on site ground water at nuclear plants. As part of the groundwater monitoring and protection program, Entergy has: (1) performed reviews of plant groundwater characteristics (hydrology) and historical records of past events on site that may have potentially impacted groundwater; (2) implemented fleet procedures on how to handle events that could impact groundwater; and (3) installed groundwater monitoring wells and began periodic sampling. The program also includes protocols for notifying local officials if contamination is found.

Cost of response

Explanation of cost of response
Financial investment will depend on the specific project, unable to estimate at this time. Implementation costs vary considerably based on level of process change option selected.

Country/Area & River basin

<table>
<thead>
<tr>
<th>United States of America</th>
<th>Other, please specify (Ouachita River)</th>
</tr>
</thead>
</table>

Type of risk & Primary risk driver

<table>
<thead>
<tr>
<th>Acute physical</th>
<th>Flood (coastal, fluvial, pluvial, groundwater)</th>
</tr>
</thead>
</table>

Primary potential impact
Reduction or disruption in production capacity

Company-specific description
River flooding which curtails operations at the power plants.

Timeframe
Unknown

Magnitude of potential impact
Medium

Likelihood
Unlikely

Are you able to provide a potential financial impact figure?
No, we do not have this figure

Potential financial impact figure (currency)
<Not Applicable>

Potential financial impact figure - minimum (currency)
<Not Applicable>

Potential financial impact figure - maximum (currency)
<Not Applicable>

Explanation of financial impact

Primary response to risk
Other, please specify (Shift energy production)

Description of response
Shift energy production to other reserve units until water levels subside.

Cost of response

Explanation of cost of response
Financial investment will depend on the specific project, unable to estimate at this time. Implementation costs vary considerably based on level of process change option selected.

Country/Area & River basin

<table>
<thead>
<tr>
<th>United States of America</th>
<th>Other, please specify (White River)</th>
</tr>
</thead>
</table>

Type of risk & Primary risk driver

<table>
<thead>
<tr>
<th>Acute physical</th>
<th>Flood (coastal, fluvial, pluvial, groundwater)</th>
</tr>
</thead>
</table>
Primary potential impact
Reduction or disruption in production capacity

Company-specific description
River flooding curtailing operations at the power plant.

Timeframe
Unknown

Magnitude of potential impact
Unknown

Likelihood
Unknown

Are you able to provide a potential financial impact figure?
No, we do not have this figure

Potential financial impact figure (currency)
<Not Applicable>

Potential financial impact figure - minimum (currency)
<Not Applicable>

Potential financial impact figure - maximum (currency)
<Not Applicable>

Explanation of financial impact

Primary response to risk
Other, please specify (Shift energy production)

Description of response
Shift energy production to other reserve units until water levels subside.

Cost of response

Explanation of cost of response
Financial investment will depend on the specific project, unable to estimate at this time. Implementation costs vary considerably based on level of process change option selected.

Country/Area & River basin

<table>
<thead>
<tr>
<th>United States of America</th>
<th>Sabine River</th>
</tr>
</thead>
</table>

Type of risk & Primary risk driver

<table>
<thead>
<tr>
<th>Acute physical</th>
<th>Flood (coastal, fluvial, pluvial, groundwater)</th>
</tr>
</thead>
</table>

Primary potential impact
Reduction or disruption in production capacity

Company-specific description
River flooding curtailing operations at the power plant.

Timeframe
Unknown

Magnitude of potential impact
Unknown

Likelihood
Unknown

Are you able to provide a potential financial impact figure?
No, we do not have this figure

Potential financial impact figure (currency)
<Not Applicable>

Potential financial impact figure - minimum (currency)
<Not Applicable>

Potential financial impact figure - maximum (currency)
<Not Applicable>

Explanation of financial impact

Primary response to risk
Other, please specify (Shift energy production)

Description of response
Shift energy production to other reserve units until water levels subside.

Cost of response

Explanation of cost of response
Financial investment will depend on the specific project, unable to estimate at this time. Implementation costs vary considerably based on level of process change option selected.
United States of America	Pearl River

Country/Area & River basin

Type of risk & Primary risk driver

Acute physical	Flood (coastal, fluvial, pluvial, groundwater)

Primary potential impact
Reduction or disruption in production capacity

Company-specific description
River flooding curtailting operations at the power plant.

Timeframe
Unknown

Magnitude of potential impact
Unknown

Likelihood
Unknown

Are you able to provide a potential financial impact figure?
No, we do not have this figure

Potential financial impact figure (currency)
<Not Applicable>

Potential financial impact figure - minimum (currency)
<Not Applicable>

Potential financial impact figure - maximum (currency)
<Not Applicable>

Explanation of financial impact

Primary response to risk
Other, please specify (Shift energy production)

Description of response
Shift energy production to other reserve units until water levels subside.

Cost of response
Financial investment will depend on the specific project, unable to estimate at this time. Implementation costs vary considerably based on level of process change option selected.

Country/Area & River basin

United States of America	Other, please specify (Big Black River)

Type of risk & Primary risk driver

Acute physical	Flood (coastal, fluvial, pluvial, groundwater)

Primary potential impact
Reduction or disruption in production capacity

Company-specific description
River flooding curtailting operations at the power plant.

Timeframe
Unknown

Magnitude of potential impact
Unknown

Likelihood
Unknown

Are you able to provide a potential financial impact figure?
No, we do not have this figure

Potential financial impact figure (currency)
<Not Applicable>

Potential financial impact figure - minimum (currency)
<Not Applicable>

Potential financial impact figure - maximum (currency)
<Not Applicable>
Explanation of financial impact

Primary response to risk
Other, please specify (Shift energy production)

Description of response
Shift energy production to other reserve units until water levels subside.

Cost of response

Explanation of cost of response
Financial investment will depend on the specific project, unable to estimate at this time. Implementation costs vary considerably based on level of process change option selected.

Country/Area & River basin

| United States of America | St. Lawrence |

Type of risk & Primary risk driver

| Acute physical | Flood (coastal, fluvial, pluvial, groundwater) |

Primary potential impact
Reduction or disruption in production capacity

Company-specific description
River flooding which curtails operations at the power plants.

Timeframe
Unknown

Magnitude of potential impact
Unknown

Likelihood
Unknown

Are you able to provide a potential financial impact figure?
No, we do not have this figure

Potential financial impact figure (currency)
<Not Applicable>

Potential financial impact figure - minimum (currency)
<Not Applicable>

Potential financial impact figure - maximum (currency)
<Not Applicable>

Explanation of financial impact

Primary response to risk
Other, please specify (Shift energy production)

Description of response
Shift energy production to other reserve units until water levels subside.

Cost of response

Explanation of cost of response
Financial investment will depend on the specific project, unable to estimate at this time. Implementation costs vary considerably based on level of process change option selected.

Country/Area & River basin

| United States of America | Other, please specify (San Jacinto River (Lewis Creek Reservoir)) |

Type of risk & Primary risk driver

| Acute physical | Flood (coastal, fluvial, pluvial, groundwater) |

Primary potential impact
Reduction or disruption in production capacity

Company-specific description
During periods of river flood stage, the electric generation from the plant may need to be reduced.

Timeframe
1-3 years

Magnitude of potential impact
Low
Likelihood
Likely

Are you able to provide a potential financial impact figure?
No, we do not have this figure

Potential financial impact figure (currency)
<Not Applicable>

Potential financial impact figure - minimum (currency)
<Not Applicable>

Potential financial impact figure - maximum (currency)
<Not Applicable>

Explanation of financial impact

Primary response to risk
Other, please specify (Water Conservation)

Description of response
Entergy undertook a long-term strategic study of water availability for its Lewis Creek Plant. The study included analysis of the groundwater wells and water plant system at Lewis Creek, and the facility developed and executed a plan to reduce water withdrawal by 30% through process design changes. By working with the district to optimize water use and leveraging best practices, Lewis Creek was able to exceed its water conservation goal of 30 percent water withdrawal by 2016 – a level also maintained throughout 2022.

Cost of response
Explanation of cost of response
Financial investment will depend on the specific project, unable to estimate at this time. Implementation costs vary considerably based on level of process change option selected.

Country/Area & River basin

<table>
<thead>
<tr>
<th>United States of America</th>
<th>Other, please specify (Arkansas River)</th>
</tr>
</thead>
</table>

Type of risk & Primary risk driver

<table>
<thead>
<tr>
<th>Regulatory</th>
<th>Lack of transparency of water rights</th>
</tr>
</thead>
</table>

Primary potential impact
Fines, penalties or enforcement orders

Company-specific description
Virtually all of Entergy’s discharges to water are controlled either by state-issued, federally enforceable permits issued under the National Pollution Discharge Elimination System of the federal Clean Water Act or by similar state programs. In addition, Entergy facilities operate under approximately 40,000 specific water pollution control permit requirements. If a permit requirement is in exceedance, depending on the severity of the violation, monetary fines and fees can be imposed on the power plants.

Timeframe
Current up to one year

Magnitude of potential impact
Low

Likelihood
Unlikely

Are you able to provide a potential financial impact figure?
Yes, an estimated range

Potential financial impact figure (currency)
<Not Applicable>

Potential financial impact figure - minimum (currency)

Potential financial impact figure - maximum (currency)

Explanation of financial impact
Depending on the exceedance of the permit requirement, the fine issued to the power plant may vary based on the duration and severity of the violation. Incuring a penalty or fine for permit noncompliance would be rare for Entergy, as across our operations, Entergy has maintained a compliance rate with state and federal water pollution control permit requirements of at least 99.9% from year to year.

Primary response to risk
Other, please specify (Internal Procedures and Policy)

Description of response
Entergy maintains a robust environmental compliance program, and water stewardship is an integral part of the company’s environmental policies. Compliance with all state-issued, federally enforceable permits are tracked internally, and Entergy also makes this information publicly available.

https://www.entergy.com/userfiles/content/sustainability/performance_data_table.pdf

These practices and a strong commitment to environmental compliance have led Entergy to maintain a compliance rate with state and federal water pollution control permit requirements of at least 99.9% from year to year.

Cost of response
Explanation of cost of response
The cost of response is associated with a third-party compliance EHS auditing program. Water permit compliance is one of many regulatory obligations examined during these audits.

<table>
<thead>
<tr>
<th>Country/Area & River basin</th>
<th>United States of America</th>
<th>Other, please specify (Ouachita River)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Type of risk & Primary risk driver</th>
<th>Regulatory</th>
<th>Lack of transparency of water rights</th>
</tr>
</thead>
</table>

Primary potential impact
Fines, penalties or enforcement orders

Company-specific description
Virtually all of Entergy’s discharges to water are controlled either by state-issued, federally enforceable permits issued under the National Pollution Discharge Elimination System of the federal Clean Water Act or by similar state programs. In addition, Entergy facilities operate under approximately 40,000 specific water pollution control permit requirements. If a permit requirement is in exceedance, depending on the severity of the violation, monetary fines and fees can be imposed on the power plants.

Timeframe
Current up to one year

Magnitude of potential impact
Low

Likelihood
Unlikely

Are you able to provide a potential financial impact figure?
Yes, an estimated range

Potential financial impact figure (currency)
<Not Applicable>

Potential financial impact figure - minimum (currency)

Potential financial impact figure - maximum (currency)

Explanation of financial impact
Depending on the exceedance of the permit requirement, the fine issued to the power plant may vary based on the duration and severity of the violation. Incuring a penalty or fine for permit noncompliance would be rare for Entergy, as across our operations, Entergy has maintained a compliance rate with state and federal water pollution control permit requirements of at least 99.9% from year to year.

Primary response to risk
Other, please specify (Internal Procedures and Policy)

Description of response
Entergy maintains a robust environmental compliance program, and water stewardship is an integral part of the company's environmental policies. Compliance with all state-issued, federally enforceable permits are tracked internally, and Entergy also makes this information publicly available.

https://www.entergy.com/userfiles/content/sustainability/performance_data_table.pdf

These practices and a strong commitment to environmental compliance have led Entergy to maintain a compliance rate with state and federal water pollution control permit requirements of at least 99.9% from year to year.

Cost of response

Explanation of cost of response
The cost of response is associated with a third-party compliance EHS auditing program. Water permit compliance is one of many regulatory obligations examined during these audits.

<table>
<thead>
<tr>
<th>Country/Area & River basin</th>
<th>United States of America</th>
<th>St. Lawrence</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Type of risk & Primary risk driver</th>
<th>Regulatory</th>
<th>Lack of transparency of water rights</th>
</tr>
</thead>
</table>

Primary potential impact
Fines, penalties or enforcement orders

Company-specific description
Virtually all of Entergy’s discharges to water are controlled either by state-issued, federally enforceable permits issued under the National Pollution Discharge Elimination System of the federal Clean Water Act or by similar state programs. In addition, Entergy facilities operate under approximately 40,000 specific water pollution control permit requirements. If a permit requirement is in exceedance, depending on the severity of the violation, monetary fines and fees can be imposed on the power plants.

Timeframe
Current up to one year

Magnitude of potential impact
Low
Likelihood
Unlikely

Are you able to provide a potential financial impact figure?
Yes, an estimated range

Potential financial impact figure (currency)
<Not Applicable>

Potential financial impact figure - minimum (currency)

Potential financial impact figure - maximum (currency)

Explanation of financial impact
Depending on the exceedance of the permit requirement, the fine issued to the power plant may vary based on the duration and severity of the violation. Incurred a penalty or fine for permit noncompliance would be rare for Entergy, as across our operations, Entergy has maintained a compliance rate with state and federal water pollution control permit requirements of at least 99.99% from year to year.

Primary response to risk
Other, please specify (Internal Procedures and Policy)

Description of response
Entergy maintains a robust environmental compliance program, and water stewardship is an integral part of the company's environmental policies. Compliance with all state-issued, federally enforceable permits are tracked internally, and Entergy also makes this information publicly available.

https://www.entergy.com/userfiles/content/sustainability/performance_data_table.pdf

These practices and a strong commitment to environmental compliance have led Entergy to maintain a compliance rate with state and federal water pollution control permit requirements of at least 99.9% from year to year.

Cost of response

Explanation of cost of response
The cost of response is associated with a third-party compliance EHS auditing program. Water permit compliance is one of many regulatory obligations examined during these audits.

Country/Area & River basin

United States of America
Other, please specify (San Jacinto River (Lewis Creek Reservoir))

Type of risk & Primary risk driver

Regulatory
Lack of transparency of water rights

Primary potential impact
Fines, penalties or enforcement orders

Company-specific description
Virtually all of Entergy’s discharges to water are controlled either by state-issued, federally enforceable permits issued under the National Pollution Discharge Elimination System of the federal Clean Water Act or by similar state programs. In addition, Entergy facilities operate under approximately 40,000 specific water pollution control permit requirements. If a permit requirement is in exceedance, depending on the severity of the violation, monetary fines and fees can be imposed on the power plants.

Timeframe
Current up to one year

Magnitude of potential impact
Low

Likelihood
Unlikely

Are you able to provide a potential financial impact figure?
Yes, an estimated range

Potential financial impact figure (currency)
<Not Applicable>

Potential financial impact figure - minimum (currency)

Potential financial impact figure - maximum (currency)

Explanation of financial impact
Depending on the exceedance of the permit requirement, the fine issued to the power plant may vary based on the duration and severity of the violation. Incurred a penalty or fine for permit noncompliance would be rare for Entergy, as across our operations, Entergy has maintained a compliance rate with state and federal water pollution control permit requirements of at least 99.9% from year to year.

Primary response to risk
Other, please specify (Internal Procedures and Policy)

Description of response
Entergy maintains a robust environmental compliance program, and water stewardship is an integral part of the company's environmental policies. Compliance with all state-issued, federally enforceable permits are tracked internally, and Entergy also makes this information publicly available.

https://www.entergy.com/userfiles/content/sustainability/performance_data_table.pdf

These practices and a strong commitment to environmental compliance have led Entergy to maintain a compliance rate with state and federal water pollution control permit
requirements of at least 99.9% from year to year.

Cost of response

Explanation of cost of response
The cost of response is associated with a third-party compliance EHS auditing program. Water permit compliance is one of many regulatory obligations examined during these audits.

Country/Area & River basin

| United States of America | Other, please specify (White River) |

Type of risk & Primary risk driver

| Regulatory | Lack of transparency of water rights |

Primary potential impact
Fines, penalties or enforcement orders

Company-specific description

Virtually all of Entergy’s discharges to water are controlled either by state-issued, federally enforceable permits issued under the National Pollution Discharge Elimination System of the federal Clean Water Act or by similar state programs. In addition, Entergy facilities operate under approximately 40,000 specific water pollution control permit requirements. If a permit requirement is in exceedance, depending on the severity of the violation, monetary fines and fees can be imposed on the power plants.

Timeframe
Current up to one year

Magnitude of potential impact
Low

Likelihood
Unlikely

Are you able to provide a potential financial impact figure?
Yes, an estimated range

Potential financial impact figure (currency)
<Not Applicable>

Potential financial impact figure - minimum (currency)

Potential financial impact figure - maximum (currency)

Explanation of financial impact
Depending on the exceedance of the permit requirement, the fine issued to the power plant may vary based on the duration and severity of the violation. Incurring a penalty or fine for permit noncompliance would be rare for Entergy, as across our operations, Entergy has maintained a compliance rate with state and federal water pollution control permit requirements of at least 99.99% from year to year.

Primary response to risk
Other, please specify (Internal Procedures and Policy)

Description of response
Entergy maintains a robust environmental compliance program, and water stewardship is an integral part of the company's environmental policies. Compliance with all state-issued, federally enforceable permits are tracked internally, and Entergy also makes this information publicly available.

https://www.entergy.com/userfiles/content/sustainability/performance_data_table.pdf

These practices and a strong commitment to environmental compliance have led Entergy to maintain a compliance rate with state and federal water pollution control permit requirements of at least 99.9% from year to year.

Cost of response

Explanation of cost of response
The cost of response is associated with a third-party compliance EHS auditing program. Water permit compliance is one of many regulatory obligations examined during these audits.

Country/Area & River basin

| United States of America | Other, please specify (Big Black River) |

Type of risk & Primary risk driver

| Regulatory | Lack of transparency of water rights |

Primary potential impact
Fines, penalties or enforcement orders

Company-specific description

Virtually all of Entergy’s discharges to water are controlled either by state-issued, federally enforceable permits issued under the National Pollution Discharge Elimination System of the federal Clean Water Act or by similar state programs. In addition, Entergy facilities operate under approximately 40,000 specific water pollution control permit requirements. If a permit requirement is in exceedance, depending on the severity of the violation, monetary fines and fees can be imposed on the power plants.
Timeframe
Current up to one year

Magnitude of potential impact
Low

Likelihood
Unlikely

Are you able to provide a potential financial impact figure?
Yes, an estimated range

Potential financial impact figure (currency)
<Not Applicable>

Potential financial impact figure - minimum (currency)

Potential financial impact figure - maximum (currency)

Explanation of financial impact
Depending on the exceedance of the permit requirement, the fine issued to the power plant may vary based on the duration and severity of the violation. Incurring a penalty or fine for permit noncompliance would be rare for Entergy, as across our operations, Entergy has maintained a compliance rate with state and federal water pollution control permit requirements of at least 99.9% from year to year.

Primary response to risk
Other, please specify (Internal Procedures and Policy)

Description of response
Entergy maintains a robust environmental compliance program, and water stewardship is an integral part of the company's environmental policies. Compliance with all state-issued, federally enforceable permits are tracked internally, and Entergy also makes this information publicly available.

https://www.entergy.com/userfiles/content/sustainability/performance_data_table.pdf

These practices and a strong commitment to environmental compliance have led Entergy to maintain a compliance rate with state and federal water pollution control permit requirements of at least 99.9% from year to year.

Cost of response

Explanation of cost of response
The cost of response is associated with a third-party compliance EHS auditing program. Water permit compliance is one of many regulatory obligations examined during these audits.

W4.2a
(W4.2a) Provide details of risks identified within your value chain (beyond direct operations) with the potential to have a substantive financial or strategic impact on your business, and your response to those risks.

Country/Area & River basin

| United States of America | Other, please specify (Arkansas River) |

Stage of value chain
Supply chain

Type of risk & Primary risk driver

| Acute physical | Flood (coastal, fluvial, pluvial, groundwater) |

Primary potential impact
Reduction or disruption in production capacity

Company-specific description
Entergy’s fossil generation facilities are at risk for obtaining fuel supplies during severe weather events. Examples of such occurrences are flooding in the Midwest to the extent the rail shipments of coal were curtailed and during extreme weather events when natural gas supplies were curtailed.

Timeframe
Unknown

Magnitude of potential impact
Medium-low

Likelihood
Likely

Are you able to provide a potential financial impact figure?
No, we do not have this figure

Potential financial impact figure (currency)
<Not Applicable>

Potential financial impact figure - minimum (currency)
<Not Applicable>

Potential financial impact figure - maximum (currency)
<Not Applicable>

Explanation of financial impact

Primary response to risk

| Direct operations | Other, please specify (Alternate sources of fuel are identified and acquired to maintain generation activities at the sites.) |

Description of response
Alternate sources of fuel are identified and acquired to maintain generation activities at the sites. The only generation source in this river basin is a coal plant, where coal inventory is stockpiled.

Cost of response

Explanation of cost of response
Financial investment will depend on the specific project, unable to estimate at this time. Implementation costs vary considerably based on level of process change option selected.

W4.3

(W4.3) Have you identified any water-related opportunities with the potential to have a substantive financial or strategic impact on your business?
Yes, we have identified opportunities, and some/all are being realized

W4.3a
Provide details of opportunities currently being realized that could have a substantive financial or strategic impact on your business.

Type of opportunity

Primary water-related opportunity

Increased resilience to impacts of climate change

Company-specific description & strategy to realize opportunity

Entergy deploys storm guys on critical distribution structures in open marsh areas along the coast. Storm guys are tensioned cables designed to add stability to our structures. On distribution circuits close to the Gulf Coast, we use class three (or larger) poles for trunk feeder construction. Class three poles are rated to withstand 3,000 lbs. of horizontal load. Climate change may cause flooding and storms to become more frequent. Being resilient to these occurrences is imperative to Entergy's operations. Entergy continually prepares for storms and flooding and limits the potential damages they can cause on our systems by:

• Completing at least one cycle of transmission aerial inspections before June of each year.
• Continuing to identify distribution circuits with operational challenges and devices which tend to cause reliability issues and take appropriate steps to improve the performance of these facilities.
• Identifying and removing dangerous trees outside of rights-of-way to prevent them from falling into our lines.
• Purchasing portable batteries and mobile substation equipment for quick restoration of power when our substations are compromised by storms.
• Upgrading communications systems to enhance our ability to limit the impact of outages through improved protection and controls.

Estimated timeframe for realization

More than 6 years

Magnitude of potential financial impact

High

Are you able to provide a potential financial impact figure?

No, we do not have this figure

Potential financial impact figure (currency)

<Not Applicable>

Potential financial impact figure – minimum (currency)

<Not Applicable>

Potential financial impact figure – maximum (currency)

<Not Applicable>

Explanation of financial impact

Entergy recognizes the linkage between climate change and water usage and the importance of water stewardship. Entergy plans to invest over $16 billion in capital (as of February 2023) over the next three years (2023E to 2025E) in generation assets and transmission and distribution infrastructure. Initiated in 2002, Entergy’s portfolio transformation strategy incorporates cleaner, more efficient generation sources, allowing for the retirement of older, less efficient legacy units. This proposed fleet modernization is expected to drastically reduce Entergy’s water withdrawal volumes, as these newer plants would withdraw significantly less water than our legacy units. Currently, 22% of our portfolio is non-emitting, mostly coming from nuclear energy. Clean, modern natural gas represents 44% of our generation capacity. Since 2000, Entergy’s utilities have added over 10.5 GW of highly efficient generation. These units improve system reliability, reduce environmental impacts, and reduce costs for our customers by using less fuel. They also have lower maintenance costs and produce significantly fewer emissions than older generation.

Estimated timeframe for realization

More than 6 years

Magnitude of potential financial impact

High

Are you able to provide a potential financial impact figure?

No, we do not have this figure

Potential financial impact figure (currency)

<Not Applicable>

Potential financial impact figure – minimum (currency)

<Not Applicable>

Potential financial impact figure – maximum (currency)

<Not Applicable>

Explanation of financial impact

W5. Facility-level water accounting

W5.1

(W5.1) For each facility referenced in W4.1c, provide coordinates, water accounting data, and a comparison with the previous reporting year.
Facility reference number
Facility 1

Facility name (optional)
River Bend Station

Country/Area & River basin
United States of America Mississippi River

Latitude
30.759557

Longitude
-91.330083

Located in area with water stress
No

Primary power generation source for your electricity generation at this facility
Nuclear

Oil & gas sector business division
<Not Applicable>

Total water withdrawals at this facility (megaliters/year)
27994

Comparison of total withdrawals with previous reporting year
Higher

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
27994

Withdrawals from brackish surface water/seawater
0

Withdrawals from groundwater - renewable
0

Withdrawals from groundwater - non-renewable
0

Withdrawals from produced/entrained water
0

Withdrawals from third party sources
0

Total water discharges at this facility (megaliters/year)
5822

Comparison of total discharges with previous reporting year
Higher

Discharges to fresh surface water
5822

Discharges to brackish surface water/seawater
0

Discharges to groundwater
0

Discharges to third party destinations
0

Total water consumption at this facility (megaliters/year)
22173

Comparison of total consumption with previous reporting year
Higher

Please explain
Water consumption at River Bend increased by 11% between 2021 and 2022, which is considered 'higher' and in line with historical fluctuations from generation, maintenance, and climate. Yearly changes less than 5 percent were considered "about the same." Changes between 5% and 25% were considered "higher" or "lower." Year-to-year changes greater than 25% were considered "much higher"/"much lower."

Facility reference number
Facility 2

Facility name (optional)
Grand Gulf Nuclear Station

Country/Area & River basin
United States of America Mississippi River
Latitude 32.009462
Longitude -91.047001
Located in area with water stress No
Primary power generation source for your electricity generation at this facility Nuclear
Oil & gas sector business division <Not Applicable>
Total water withdrawals at this facility (megaliters/year) 34496
Comparison of total withdrawals with previous reporting year Much lower
Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes 0
Withdrawals from brackish surface water/seawater 0
Withdrawals from groundwater - renewable 34496
Withdrawals from groundwater - non-renewable 0
Withdrawals from produced/entrained water 0
Withdrawals from third party sources 0
Total water discharges at this facility (megaliters/year) 6678
Comparison of total discharges with previous reporting year Lower
Discharges to fresh surface water 6678
Discharges to brackish surface water/seawater 0
Discharges to groundwater 0
Discharges to third party destinations 0
Total water consumption at this facility (megaliters/year) 27818
Comparison of total consumption with previous reporting year Much lower
Please explain Power production at Grand Gulf was approximately 30% less in 2022 than 2021, contributing to significant decreases in water consumption. This was due to both a several month refuelling outage and an additional month-long equipment related outage. Water consumption decreased 44%, which is considered 'much lower.' Yearly changes less than 5 percent were considered "about the same." Changes between 5% and 25% were considered "higher" or "lower." Year-to-year changes greater than 25% were considered "much higher/"much lower."

Facility reference number Facility 3
Facility name (optional) Waterford 3 Nuclear Generating Station
Country/Area & River basin

<table>
<thead>
<tr>
<th>Latitude</th>
<th>Longitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>29.996843</td>
<td>-90.471402</td>
</tr>
</tbody>
</table>
Located in area with water stress No
Primary power generation source for your electricity generation at this facility
Nuclear

Oil & gas sector business division
<Not Applicable>

Total water withdrawals at this facility (megaliters/year)
1426.46

Comparison of total withdrawals with previous reporting year
Lower

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
1426462.19

Withdrawals from brackish surface water/seawater
0

Withdrawals from groundwater - renewable
0

Withdrawals from groundwater - non-renewable
0

Withdrawals from produced/entrained water
0

Withdrawals from third party sources
0

Total water discharges at this facility (megaliters/year)
1426462

Comparison of total discharges with previous reporting year
Lower

Discharges to fresh surface water
1426462

Discharges to brackish surface water/seawater
0

Discharges to groundwater
0

Discharges to third party destinations
0

Total water consumption at this facility (megaliters/year)
0

Comparison of total consumption with previous reporting year
About the same

Please explain
Water consumption at the Waterford 3 Nuclear Generating Station was 7% less in 2022 than in 2021, which is considered 'lower.' Waterford 3 experienced an outage for several months, leading to a decrease in water withdrawal and consumption. The Facility withdraws but does not consume water as it employs once-through cooling, discharging all water that is withdrawn. Yearly changes less than 5 percent were considered "about the same." Changes between 5% and 25% were considered "higher" or "lower." Year-to-year changes greater than 25% were considered "much higher"/"much lower."

Facility reference number
Facility 4

Facility name (optional)
Arkansas Nuclear One

Country/Area & River basin
United States of America

Latitude
35.310705

Longitude
-93.23088

Located in area with water stress
No

Primary power generation source for your electricity generation at this facility
Nuclear

Oil & gas sector business division
<Not Applicable>

Total water withdrawals at this facility (megaliters/year)
1345424

Comparison of total withdrawals with previous reporting year
About the same
Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
1345424

Withdrawals from brackish surface water/seawater
0

Withdrawals from groundwater - renewable
0

Withdrawals from groundwater - non-renewable
0

Withdrawals from produced/entrained water
0

Withdrawals from third party sources
0

Total water discharges at this facility (megaliters/year)
1322627

Comparison of total discharges with previous reporting year
About the same

Discharges to fresh surface water
1322627

Discharges to brackish surface water/seawater
0

Discharges to groundwater
0

Discharges to third party destinations
0

Total water consumption at this facility (megaliters/year)
22796

Comparison of total consumption with previous reporting year
Much higher

Please explain

While water withdrawal and discharge at Arkansas Nuclear One (ANO) between 2021 and 2022 saw about a 1% decrease, water consumption overall increased by 30%, which is considered “much higher.” ANO Unit 1 is a once-through cooling plant and experienced a refuelling outage, reducing that unit’s withdrawal by 35-40%. ANO Unit 2, however, is a cooling tower unit and remained in full operation with evaporation contributing to higher water consumption levels. Refuelling at each unit alternates each year, so these year-over-year water impact changes are considered normal and reflective of plant maintenance. Yearly changes less than 5 percent were considered “about the same.” Changes between 5% and 25% were considered “higher” or “lower.” Year-to-year changes greater than 25% were considered “much higher” or “much lower.”

Facility reference number
Facility 6

Facility name (optional)
Lewis Creek Power Plant

Country/Area & River basin

| United States of America | Other, please specify (Other: San Jacinto River (Lewis Creek Reservoir)) |

Latitude
30.436961

Longitude
-95.520726

Located in area with water stress
Yes

Primary power generation source for your electricity generation at this facility
Gas

Oil & gas sector business division
<Not Applicable>

Total water withdrawals at this facility (megaliters/year)
556652.68

Comparison of total withdrawals with previous reporting year
Higher

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
565652.68

Withdrawals from brackish surface water/seawater
0

Withdrawals from groundwater - renewable
0
Withdrawals from groundwater - non-renewable
0
Withdrawals from produced/entrained water
0
Withdrawals from third party sources
0
Total water discharges at this facility (megaliters/year)
556652.68

Comparison of total discharges with previous reporting year
Higher
Discharges to fresh surface water
556652.68
Discharges to brackish surface water/seawater
0
Discharges to groundwater
0
Discharges to third party destinations
0
Total water consumption at this facility (megaliters/year)
0

Comparison of total consumption with previous reporting year
About the same
Please explain
Water consumption at the Lewis Creek Power Plant remained the same between 2021 and 2022 (zero). The Facility withdraws but does not consume water as it employs once-through cooling, discharging all water that is withdrawn. Yearly changes less than 5 percent were considered "about the same." Changes between 5% and 25% were considered "higher" or "lower." Year-to-year changes greater than 25% were considered "much higher"/"much lower."

Facility reference number
Facility 7
Facility name (optional)
White Bluff Power Plant
Country/Area & River basin

<table>
<thead>
<tr>
<th>Latitude</th>
<th>34.4236</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longitude</td>
<td>-92.1392</td>
</tr>
</tbody>
</table>

Located in area with water stress
No
Primary power generation source for your electricity generation at this facility
Coal - hard
Oil & gas sector business division
<Not Applicable>
Total water withdrawals at this facility (megaliters/year)
6988

Comparison of total withdrawals with previous reporting year
Much lower
Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
6988
Withdrawals from brackish surface water/seawater
0
Withdrawals from groundwater - renewable
0
Withdrawals from groundwater - non-renewable
0
Withdrawals from produced/entrained water
0
Withdrawals from third party sources
0
Total water discharges at this facility (megaliters/year)
2220
Comparison of total discharges with previous reporting year
Much lower

Discharges to fresh surface water
2200

Discharges to brackish surface water/seawater
0

Discharges to groundwater
0

Discharges to third party destinations
0

Total water consumption at this facility (megaliters/year)
4768.27

Comparison of total consumption with previous reporting year
Much lower

Please explain
At White Bluff, Entergy withdraws water from the Arkansas River and stores it in an onsite pond (Clear Water). Clear Water also receives the majority of the stormwater runoff from the plant, along with all process wastewater discharges other than cooling tower blowdown. Cooling water to the plant is supplied through Clear Water. Thereby, in addition to reduced power generation in 2022, the plant limited withdrawals from the river due to continued high water levels in Clear Water from increased storms and flooding in the area. Between 2021 and 2022, water withdrawal was 38% less, water discharge 25% less and water consumption 43%, all of which are considered 'much lower.' Yearly changes less than 5 percent were considered "about the same." Changes between 5% and 25% were considered "higher" or "lower." Year-to-year changes greater than 25% were considered "much higher"/"much lower.”

Facility reference number
Facility 8

Facility name (optional)
Lake Charles

Country/Area & River basin
| United States of America | Sabine River |

Latitude
30.271896

Longitude
-93.290606

Located in area with water stress
No

Primary power generation source for your electricity generation at this facility
Gas

Oil & gas sector business division
<Not Applicable>

Total water withdrawals at this facility (megaliters/year)
7414

Comparison of total withdrawals with previous reporting year
Higher

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
0

Withdrawals from brackish surface water/seawater
0

Withdrawals from groundwater - renewable
0

Withdrawals from groundwater - non-renewable
0

Withdrawals from produced/entrained water
0

Withdrawals from third party sources
7414

Total water discharges at this facility (megaliters/year)
1723

Comparison of total discharges with previous reporting year
Much higher

Discharges to fresh surface water
1723

Discharges to brackish surface water/seawater
0
Discharges to groundwater
0
Discharges to third party destinations
0
Total water consumption at this facility (megaliters/year)
5691.09
Comparison of total consumption with previous reporting year
Higher

Please explain
Water consumption from 2021 to 2022 at Lake Charles increased by 17%, which is considered 'higher' and in line with historical fluctuations from generation, maintenance, and climate. Yearly changes less than 5 percent were considered "about the same." Changes between 5% and 25% were considered "higher" or "lower." Year-to-year changes greater than 25% were considered "much higher"/"much lower."

Facility reference number
Facility 9

Facility name (optional)
Wayne Leonard (SCPS)

Country/Area & River basin
United States of America Mississippi River

Latitude
30.005737
Longitude
-90.452922
Located in area with water stress
No

Primary power generation source for your electricity generation at this facility
Gas

Oil & gas sector business division
<Not Applicable>

Total water withdrawals at this facility (megaliters/year)
6476.48
Comparison of total withdrawals with previous reporting year
About the same
Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
6476.48
Withdrawals from brackish surface water/seawater
0
Withdrawals from groundwater - renewable
0
Withdrawals from groundwater - non-renewable
0
Withdrawals from produced/entrained water
0
Withdrawals from third party sources
0
Total water discharges at this facility (megaliters/year)
1400.51
Comparison of total discharges with previous reporting year
Lower
Discharges to fresh surface water
1400.51
Discharges to brackish surface water/seawater
0
Discharges to groundwater
0
Discharges to third party destinations
0
Total water consumption at this facility (megaliters/year)
5075.97
Comparison of total consumption with previous reporting year
About the same
Please explain
Water consumption at J. Wayne Leonard (SCPS) from 2021 to 2022 decreased by 1% which is considered "about the same" and in line with historical fluctuations from
generation, maintenance, and climate. Yearly changes less than 5 percent were considered "about the same." Changes between 5% and 25% were considered "higher" or "lower." Year-to-year changes greater than 25% were considered "much higher"/"much lower."

Facility reference number
Facility 10

Facility name (optional)
Independence Power Plant

Country/Area & River basin

<table>
<thead>
<tr>
<th>United States of America</th>
<th>Other, please specify (White River)</th>
</tr>
</thead>
</table>

Latitude
35.6733

Longitude
-91.4083

Located in area with water stress
No

Primary power generation source for your electricity generation at this facility
Coal - hard

Oil & gas sector business division
<Not Applicable>

Total water withdrawals at this facility (megaliters/year)
8842.46

Comparison of total withdrawals with previous reporting year
Lower

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
8842.46

Withdrawals from brackish surface water/seawater
0

Withdrawals from groundwater - renewable
0

Withdrawals from groundwater - non-renewable
0

Withdrawals from produced/entrained water
0

Withdrawals from third party sources
0

Total water discharges at this facility (megaliters/year)
4122.96

Comparison of total discharges with previous reporting year
Much higher

Discharges to fresh surface water
4122.96

Discharges to brackish surface water/seawater
0

Discharges to groundwater
0

Discharges to third party destinations
0

Total water consumption at this facility (megaliters/year)
4719.5

Comparison of total consumption with previous reporting year
Much lower

Please explain
In 2022, water consumption at Independence plant was 40% lower than it was in 2021, which is considered "much lower." This difference is attributable to decreased power generation and an increase in the amount of storm water intake. Yearly changes less than percent were considered "about the same." Changes between 5% and 25% were considered "higher" or "lower." Year-to-year changes greater than 25% were considered "much higher"/"much lower."

Facility reference number
Facility 11

Facility name (optional)
Hot Spring Energy Facility
Country/Area & River basin

United States of America Other, please specify (Ouachita River)

Latitude
34.2963

Longitude
-92.8683

Located in area with water stress
No

Primary power generation source for your electricity generation at this facility
Gas

Oil & gas sector business division
<Not Applicable>

Total water withdrawals at this facility (megaliters/year)
1223.2

Comparison of total withdrawals with previous reporting year
Higher

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
1223.2

Withdrawals from brackish surface water/seawater
0

Withdrawals from groundwater - renewable
0

Withdrawals from groundwater - non-renewable
0

Withdrawals from produced/entrained water
0

Withdrawals from third party sources
0

Total water discharges at this facility (megaliters/year)
238.94

Comparison of total discharges with previous reporting year
Higher

Discharges to fresh surface water
238.94

Discharges to brackish surface water/seawater
0

Discharges to groundwater
0

Discharges to third party destinations
0

Total water consumption at this facility (megaliters/year)
98.25

Comparison of total consumption with previous reporting year
Higher

Please explain
Water consumption at Hot Spring Energy Facility increased by 5% between 2021 and 2022, which is considered 'higher' and in line with historical fluctuations from generation, maintenance, and climate. Yearly changes less than 5 percent were considered "about the same." Changes between 5% and 25% were considered "higher" or "lower." Year-to-year changes greater than 25% were considered "much higher" or much lower.

Facility reference number
Facility 12

Facility name (optional)
Ouachita Gas Power Plant

Country/Area & River basin

United States of America Other, please specify (Ouachita River)

Latitude
32.7056

Longitude
-92.0697
Located in area with water stress
No

Primary power generation source for your electricity generation at this facility
Gas

Oil & gas sector business division
<Not Applicable>

Total water withdrawals at this facility (megaliters/year)
3187.72

Comparison of total withdrawals with previous reporting year
Lower

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
3187.72

Withdrawals from brackish surface water/seawater
0

Withdrawals from groundwater - renewable
0

Withdrawals from groundwater - non-renewable
0

Withdrawals from produced/entrained water
0

Withdrawals from third party sources
0

Total water discharges at this facility (megaliters/year)
1558.94

Comparison of total discharges with previous reporting year
Much higher

Discharges to fresh surface water
1558.94

Discharges to brackish surface water/seawater
0

Discharges to groundwater
0

Discharges to third party destinations
0

Total water consumption at this facility (megaliters/year)
1628.78

Comparison of total consumption with previous reporting year
Much lower

Please explain
Water consumption at Ouachita Gas Plant decreased by 37% between 2021 and 2022, which is considered "much lower" and is attributable to a higher intake of stormwater, which also increased discharge. Yearly changes less than 5% were considered "about the same." Changes between 5% and 25% were considered "higher" or "lower." Year-to-year changes greater than 25% were considered "much higher" or "much lower."

<table>
<thead>
<tr>
<th>Facility reference number</th>
<th>Facility 13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Facility name (optional)</td>
<td>Union Power Station</td>
</tr>
<tr>
<td>Country/Area & River basin</td>
<td></td>
</tr>
<tr>
<td></td>
<td>United States of America</td>
</tr>
<tr>
<td></td>
<td>Other, please specify (Ouachita River)</td>
</tr>
</tbody>
</table>

Latitude	33.2961
Longitude	-92.5933
Located in area with water stress	No
Primary power generation source for your electricity generation at this facility	Gas
Oil & gas sector business division	<Not Applicable>
Total water withdrawals at this facility (megaliters/year)	11036.63

CDP
Comparison of total withdrawals with previous reporting year
Higher
Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
0
Withdrawals from brackish surface water/seawater
0
Withdrawals from groundwater - renewable
0
Withdrawals from groundwater - non-renewable
0
Withdrawals from produced/entrained water
0
Withdrawals from third party sources
11036.63
Total water discharges at this facility (megaliters/year)
1332.37
Comparison of total discharges with previous reporting year
Higher
Discharges to fresh surface water
1332.37
Discharges to brackish surface water/seawater
0
Discharges to groundwater
0
Discharges to third party destinations
0
Total water consumption at this facility (megaliters/year)
9704.26
Comparison of total consumption with previous reporting year
Higher
Please explain
Water consumption at Union Power Station increased by 5% between 2021 and 2022, which is considered 'higher' and in line with historical fluctuations from generation, maintenance, and climate. Yearly changes less than 5 percent were considered "about the same." Changes between 5% and 25% were considered "higher" or "lower." Year-to-year changes greater than 25% were considered "much higher"/"much lower."

Facility reference number
Facility 14
Facility name (optional)
Perryville Power Station
Country/Area & River basin
United States of America
Other, please specify (Ouachita River)
Latitude
32.6914
Longitude
-92.0192
Located in area with water stress
No
Primary power generation source for your electricity generation at this facility
Gas
Oil & gas sector business division
<Not Applicable>
Total water withdrawals at this facility (megaliters/year)
2617.8
Comparison of total withdrawals with previous reporting year
About the same
Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
2617.8
Withdrawals from brackish surface water/seawater
0
Withdrawals from groundwater - renewable
0
Withdrawals from groundwater - non-renewable
0
Withdrawals from produced/entrained water
0
Withdrawals from third party sources
0
Total water discharges at this facility (megaliters/year)
888.42
Comparison of total discharges with previous reporting year
Much higher
Discharges to fresh surface water
888.42
Discharges to brackish surface water/seawater
0
Discharges to groundwater
0
Discharges to third party destinations
0
Total water consumption at this facility (megaliters/year)
1729.38
Comparison of total consumption with previous reporting year
Lower
Please explain
Water consumption at the Perryville Power Station decreased by 6% between 2021 and 2022, which is considered 'lower' and in line with historical fluctuations from generation, maintenance, and climate. Yearly changes less than 5 percent were considered "about the same." Changes between 5% and 25% were considered "higher" or "lower." Year-to-year changes greater than 25% were considered "much higher"/"much lower."

Facility reference number
Facility 15
Facility name (optional)
Lake Catherine Power Station
Country/Area & River basin
United States of America
Other, please specify (Ouachita River)

Latitude
34.4341
Longitude
-92.9046
Located in area with water stress
No
Primary power generation source for your electricity generation at this facility
Gas
Oil & gas sector business division
<Not Applicable>
Total water withdrawals at this facility (megaliters/year)
81739.97
Comparison of total withdrawals with previous reporting year
About the same
Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
81739.97
Withdrawals from brackish surface water/seawater
0
Withdrawals from groundwater - renewable
0
Withdrawals from groundwater - non-renewable
0
Withdrawals from produced/entrained water
0
Withdrawals from third party sources
0
Total water discharges at this facility (megaliters/year)
81739.97
Comparison of total discharges with previous reporting year
Much lower
Discharges to fresh surface water
81739.97
Discharges to brackish surface water/seawater
0
Discharges to groundwater
0
Discharges to third party destinations
0
Total water consumption at this facility (megaliters/year)
0

Comparison of total consumption with previous reporting year
About the same

Please explain
Water consumption at Lake Catherine stayed about the same between 2021 and 2022 (zero); however, water withdrawal and discharged decreased by 54%, which is considered "much lower." This significant change was due to a maintenance issue during a portion of 2022, which limited the water withdrawal capacity until repairs could be safely completed. Yearly changes less than 5 percent were considered "about the same." Changes between 5% and 25% were considered "higher" or "lower." Year-to-year changes greater than 25% were considered "much higher"/"much lower."

Facility reference number
Facility 16

Facility name (optional)
Waterford 1 & 2 Gas Power Plant

Country/Area & River basin

<table>
<thead>
<tr>
<th>United States of America</th>
<th>Mississippi River</th>
</tr>
</thead>
</table>

Latitude
29.9994

Longitude
-90.4758

Located in area with water stress
No

Primary power generation source for your electricity generation at this facility
Gas

Oil & gas sector business division
<Not Applicable>

Total water withdrawals at this facility (megaliters/year)
325881.94

Comparison of total withdrawals with previous reporting year
Much higher
Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
325881.94
Withdrawals from brackish surface water/seawater
0
Withdrawals from groundwater - renewable
0
Withdrawals from groundwater - non-renewable
0
Withdrawals from produced/entrained water
0
Withdrawals from third party sources
0

Total water discharges at this facility (megaliters/year)
326494.02

Comparison of total discharges with previous reporting year
Much higher
Discharges to fresh surface water
326494.02
Discharges to brackish surface water/seawater
0
Discharges to groundwater
Discharges to third party destinations
0

Total water consumption at this facility (megaliters/year)
-612.08

Comparison of total consumption with previous reporting year
Much lower

Please explain
Water consumption at Waterford 1&2 Gas Power Plant decreased from 2021 to 2022 by 1480%, which is considered “much lower.” The difference is attributable to increased rainfall being processed through site discharge meters. The Facility withdraws but does not consume any significant quantity of water as it employs once-through cooling, discharging all or nearly all water that is withdrawn. Yearly changes less than 5 percent were considered “about the same.” Changes between 5% and 25% were considered “higher” or “lower.” Year-to-year changes greater than 25% were considered “much higher” or “much lower.”

Facility reference number
Facility 17

Facility name (optional)
Little Gypsy Power Plant

Country/Area & River basin

<table>
<thead>
<tr>
<th>United States of America</th>
<th>Mississippi River</th>
</tr>
</thead>
</table>

Latitude
30.0033

Longitude
-90.4611

Located in area with water stress
No

Primary power generation source for your electricity generation at this facility
Gas

Oil & gas sector business division
<Not Applicable>

Total water withdrawals at this facility (megaliters/year)
453769.52

Comparison of total withdrawals with previous reporting year
Lower

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
453769.52

Withdrawals from brackish surface water/seawater
0

Withdrawals from groundwater - renewable
0

Withdrawals from groundwater - non-renewable
0

Withdrawals from produced/entrained water
0

Withdrawals from third party sources
0

Total water discharges at this facility (megaliters/year)
453769.52

Comparison of total discharges with previous reporting year
About the same

Discharges to fresh surface water
453769.52

Discharges to brackish surface water/seawater
0

Discharges to groundwater
0

Discharges to third party destinations
0

Total water consumption at this facility (megaliters/year)
0

Comparison of total consumption with previous reporting year
Much lower
Facility reference number
Facility 18

Facility name (optional)
Nine Mile Point Steam Electric Station & Ninemile 6

Country/Area & River basin

| United States of America | Mississippi River |

Latitude
29.9472

Longitude
-90.1458

Located in area with water stress
No

Primary power generation source for your electricity generation at this facility
Gas

Oil & gas sector business division
<Not Applicable>

Total water withdrawals at this facility (megaliters/year)
1098975.21

Comparison of total withdrawals with previous reporting year
Much higher

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
1098975.21

Withdrawals from brackish surface water/seawater
0

Withdrawals from groundwater - renewable
0

Withdrawals from groundwater - non-renewable
0

Withdrawals from produced/entrained water
0

Withdrawals from third party sources
0

Total water discharges at this facility (megaliters/year)
1099631

Comparison of total discharges with previous reporting year
Much higher

Discharges to fresh surface water
1099631

Discharges to brackish surface water/seawater
0

Discharges to groundwater
0

Discharges to third party destinations
0

Total water consumption at this facility (megaliters/year)
-656.08

Comparison of total consumption with previous reporting year
Much lower
Baxter Wilson Power Plant

Country/Area & River basin
- United States of America
- Mississippi River

<table>
<thead>
<tr>
<th>Latitude</th>
<th>32.2831</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longitude</td>
<td>-90.9306</td>
</tr>
</tbody>
</table>

Located in area with water stress
- No

Primary power generation source for your electricity generation at this facility
- Gas

Oil & gas sector business division
- <Not Applicable>

Total water withdrawals at this facility (megaliters/year)
- 79833

Comparison of total withdrawals with previous reporting year
- Much lower

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
- 79833

Withdrawals from brackish surface water/seawater
- 0

Withdrawals from groundwater - renewable
- 0

Withdrawals from groundwater - non-renewable
- 0

Withdrawals from produced/entrained water
- 0

Withdrawals from third party sources
- 0

Total water discharges at this facility (megaliters/year)
- 79766.31

Comparison of total discharges with previous reporting year
- Much lower

Discharges to fresh surface water
- 0

Discharges to brackish surface water/seawater
- 0

Discharges to groundwater
- 0

Discharges to third party destinations
- 0

Total water consumption at this facility (megaliters/year)
- 66.87

Comparison of total consumption with previous reporting year
- Much lower

Please explain

Water consumption at Baxter Wilson decreased by 66% between 2021 and 2022, which is considered ‘much lower.’ Baxter Wilson was deactivated in May 2022, thereby water withdrawal, discharge and consumption were significantly lower. Yearly changes less than 5 percent were considered "about the same." Changes between 5% and 25% were considered "higher" or "lower." Year-to-year changes greater than 25% were considered "much higher" or "much lower."

Gerald Andrus Gas Power Plant

Country/Area & River basin
- United States of America
- Mississippi River

<table>
<thead>
<tr>
<th>Latitude</th>
<th>33.3503</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longitude</td>
<td></td>
</tr>
</tbody>
</table>
Located in area with water stress
No

Primary power generation source for your electricity generation at this facility
Gas

Oil & gas sector business division
<Not Applicable>

Total water withdrawals at this facility (megaliters/year)
171694.11

Comparison of total withdrawals with previous reporting year
Much higher

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
171694.11

Withdrawals from brackish surface water/seawater
0

Withdrawals from groundwater - renewable
0

Withdrawals from groundwater - non-renewable
0

Withdrawals from produced/entrained water
0

Withdrawals from third party sources
0

Total water discharges at this facility (megaliters/year)
171831.45

Comparison of total discharges with previous reporting year
Much higher

Discharges to fresh surface water
171831.45

Discharges to brackish surface water/seawater
0

Discharges to groundwater
0

Discharges to third party destinations
0

Total water consumption at this facility (megaliters/year)
-137.33

Comparison of total consumption with previous reporting year
About the same

Please explain
Water consumption at Gerald Andrus Gas Power Plant decreased by -137% between 2021 and 2022, which is considered ‘much lower.’ The Facility withdraws but does not consume water as it employs once-through cooling, discharging all water that is withdrawn. Thus, water consumption remained below zero despite a 165% increase in withdrawal and discharge from increased power generation. Yearly changes less than 5 percent were considered “about the same.” Changes between 5% and 25% were considered “higher” or “lower.” Year-to-year changes greater than 25% were considered “much higher”/“much lower.”

Facility reference number
Facility 21

Facility name (optional)
Nelson Power Plant

Country/Area & River basin
United States of America
Sabine River

Latitude
30.2861

Longitude
-93.2917

Located in area with water stress
No

Primary power generation source for your electricity generation at this facility
Coal - hard

Oil & gas sector business division
<Not Applicable>
Total water withdrawals at this facility (megaliters/year)
4103.44

Comparison of total withdrawals with previous reporting year
Higher

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
4103.44

Withdrawals from brackish surface water/seawater
0

Withdrawals from groundwater - renewable
0

Withdrawals from groundwater - non-renewable
0

Withdrawals from produced/entrained water
0

Withdrawals from third party sources
0

Total water discharges at this facility (megaliters/year)
3014.93

Comparison of total discharges with previous reporting year
Much higher

Discharges to fresh surface water

Discharges to brackish surface water/seawater
0

Discharges to groundwater
0

Discharges to third party destinations

Total water consumption at this facility (megaliters/year)
1088.51

Comparison of total consumption with previous reporting year
Much higher

Please explain
Water consumption at Nelson Power plant increased by 30% from 2021 to 2022, which is considered 'much higher.' This increase is proportional with the additional runtime and production of the site. Note, in 2020, the facility began to supplement the use of third-party water withdrawals with groundwater from on-site wells. Yearly changes less than 5 percent were considered "about the same." Changes between 5% and 25% were considered "higher" or "lower." Year-to-year changes greater than 25% were considered "much higher" or "much lower."

Facility reference number
Facility 22

Facility name (optional)
Sabine Gas Power Plant

Country/Area & River basin

<table>
<thead>
<tr>
<th>United States of America</th>
<th>Sabine River</th>
</tr>
</thead>
</table>

Latitude
30.0242

Longitude
-93.875

Located in area with water stress
No

Primary power generation source for your electricity generation at this facility
Gas

Oil & gas sector business division
<Not Applicable>

Total water withdrawals at this facility (megaliters/year)
1413575.64

Comparison of total withdrawals with previous reporting year
About the same

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
1406232.9

Withdrawals from brackish surface water/seawater
3677
Withdrawals from groundwater - renewable
0
Withdrawals from groundwater - non-renewable
0
Withdrawals from produced/entrained water
0
Withdrawals from third party sources
3665.74
Total water discharges at this facility (megaliters/year)
1407630
Comparison of total discharges with previous reporting year
About the same
Discharges to fresh surface water
1407582.39
Discharges to brackish surface water/seawater
47.61
Discharges to groundwater
0
Discharges to third party destinations
0
Total water consumption at this facility (megaliters/year)
5945.78
Comparison of total consumption with previous reporting year
Much higher
Please explain
Water consumption at Sabine Gas Power Plants was 71% lower from 2021 to 2022, which is considered 'much higher,' while both water withdrawal and discharge remained 'about the same' at a 4% increase. Sabine 5 was added to this year’s entry, contributing to the combined sites total water consumption. Yearly changes less than 5 percent were considered "about the same." Changes between 5% and 25% were considered "higher" or "lower." Year-to-year changes greater than 25% were considered “much higher”/“much lower.”

Facility reference number
Facility 23
Facility name (optional)
Palisades Power Plant
Country/Area & River basin

<table>
<thead>
<tr>
<th>Facility reference number</th>
<th>Facility name (optional)</th>
<th>Country/Area & River basin</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Palisades Power Plant</td>
<td>United States of America</td>
</tr>
</tbody>
</table>

Latitude
42.324567
Longitude
-86.314595
Located in area with water stress
No
Primary power generation source for your electricity generation at this facility
Nuclear
Oil & gas sector business division
<Not Applicable>
Total water withdrawals at this facility (megaliters/year)
72143.56
Comparison of total withdrawals with previous reporting year
Much lower
Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
72143.56
Withdrawals from brackish surface water/seawater
0
Withdrawals from groundwater - renewable
0
Withdrawals from groundwater - non-renewable
0
Withdrawals from produced/entrained water
0
Withdrawals from third party sources
CDP
Total water discharges at this facility (megaliters/year)
62942.39

Comparison of total discharges with previous reporting year
Much lower

Discharges to fresh surface water
62942.39

Discharges to brackish surface water/seawater
0

Discharges to groundwater

Discharges to third party destinations
0

Total water consumption at this facility (megaliters/year)
9201.16

Comparison of total consumption with previous reporting year
Much lower

Please explain
Water consumption at Palisades Nuclear Plant decreased by 61% between 2021 and 2022, which is considered 'much lower.' Palisades was deactivated in May 2022, thereby water impact was significantly lower. Yearly changes less than 5 percent were considered "about the same." Changes between 5% and 25% were considered "higher" or "lower." Year-to-year changes greater than 25% were considered "much higher"/"much lower."

Facility reference number
Facility 24

Facility name (optional)
Attala Energy Facility

Country/Area & River basin

| United States of America | Other, please specify (Big Black River) |

Latitude
33.0142

Longitude
-89.6758

Located in area with water stress
No

Primary power generation source for your electricity generation at this facility
Gas

Oil & gas sector business division
<Not Applicable>

Total water withdrawals at this facility (megaliters/year)
3046.8

Comparison of total withdrawals with previous reporting year
About the same

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
3046.8

Withdrawals from brackish surface water/seawater
0

Withdrawals from groundwater - renewable
0

Withdrawals from groundwater - non-renewable
0

Withdrawals from produced/entrained water
0

Withdrawals from third party sources
0

Total water discharges at this facility (megaliters/year)
303.29

Comparison of total discharges with previous reporting year
About the same

Discharges to fresh surface water
303.29

Discharges to brackish surface water/seawater
0
Discharges to groundwater
0

Discharges to third party destinations
0

Total water consumption at this facility (megaliters/year)
2743.51

Comparison of total consumption with previous reporting year
Much higher

Please explain
Water consumption increased by 49% at Attala Energy Facility between 2021 and 2022, which is considered 'much higher.' Power generation also increased significantly at Attala, which also increased water impact. Yearly changes less than 5 percent were considered "about the same." Changes between 5% and 25% were considered "higher" or "lower." Year-to-year changes greater than 25% were considered "much higher"/"much lower."

Facility reference number
Facility 25

Facility name (optional)
Hinds

Country/Area & River basin

<table>
<thead>
<tr>
<th>United States of America</th>
<th>Mississippi River</th>
</tr>
</thead>
</table>

Latitude
32.298756

Longitude
-90.184807

Located in area with water stress
No

Primary power generation source for your electricity generation at this facility
Gas

Oil & gas sector business division
<Not Applicable>

Total water withdrawals at this facility (megaliters/year)
3138.52

Comparison of total withdrawals with previous reporting year
This is our first year of measurement

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
3138.52

Withdrawals from brackish surface water/seawater
0

Withdrawals from groundwater - renewable
0

Withdrawals from groundwater - non-renewable
0

Withdrawals from produced/entrained water
0

Withdrawals from third party sources
0

Total water discharges at this facility (megaliters/year)
237

Comparison of total discharges with previous reporting year
This is our first year of measurement

Discharges to fresh surface water
237

Discharges to brackish surface water/seawater
0

Discharges to groundwater
0

Discharges to third party destinations
0

Total water consumption at this facility (megaliters/year)
2901.51

Comparison of total consumption with previous reporting year
This is our first year of measurement
Facility reference number
Facility 26

Facility name (optional)
Montgomery County Power Station

Country/Area & River basin

| United States of America | Other, please specify (San Jacinto River (Lewis Creek Reservoir)) |

Latitude
30.436961

Longitude
-95.520726

Located in area with water stress
Yes

Primary power generation source for your electricity generation at this facility
Gas

Oil & gas sector business division
<Not Applicable>

Total water withdrawals at this facility (megaliters/year)
7352.85

Comparison of total withdrawals with previous reporting year
This is our first year of measurement

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
7352.85

Withdrawals from brackish surface water/seawater
0

Withdrawals from groundwater - renewable
0

Withdrawals from groundwater - non-renewable
0

Withdrawals from produced/entained water
0

Withdrawals from third party sources
0

Total water discharges at this facility (megaliters/year)
1451

Comparison of total discharges with previous reporting year
This is our first year of measurement

Discharges to fresh surface water
1451

Discharges to brackish surface water/seawater
0

Discharges to groundwater
0

Discharges to third party destinations
0

Total water consumption at this facility (megaliters/year)
5901.8

Comparison of total consumption with previous reporting year
This is our first year of measurement

Facility reference number
Facility 27

Facility name (optional)
Choctaw

Country/Area & River basin

| United States of America | Mississippi River |
Latitude
30.471165

Longitude
-91.147385

Located in area with water stress
No

Primary power generation source for your electricity generation at this facility
Gas

Oil & gas sector business division
<Not Applicable>

Total water withdrawals at this facility (megaliters/year)
115.22

Comparison of total withdrawals with previous reporting year
This is our first year of measurement

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
115.22

Withdrawals from brackish surface water/seawater
0

Withdrawals from groundwater - renewable
0

Withdrawals from groundwater - non-renewable
0

Withdrawals from produced/entrained water
0

Withdrawals from third party sources
0

Total water discharges at this facility (megaliters/year)
67

Comparison of total discharges with previous reporting year
This is our first year of measurement

Discharges to fresh surface water
67

Discharges to brackish surface water/seawater
0

Discharges to groundwater
0

Discharges to third party destinations
0

Total water consumption at this facility (megaliters/year)
48.24

Comparison of total consumption with previous reporting year
This is our first year of measurement

Please explain
Withdrawals from brackish surface water/seawater
Withdrawals from groundwater - renewable
Withdrawals from groundwater - non-renewable
Withdrawals from produced/entrained water
Withdrawals from third party sources

Total water discharges at this facility (megaliters/year)
Comparison of total discharges with previous reporting year
Please select
Discharges to fresh surface water
Discharges to brackish surface water/seawater
Discharges to groundwater
Discharges to third party destinations

Total water consumption at this facility (megaliters/year)
Comparison of total consumption with previous reporting year
Please select

Please explain

W5.1a

(W5.1a) For the facilities referenced in W5.1, what proportion of water accounting data has been third party verified?

Water withdrawals – total volumes
% verified
76-100

Verification standard used
Typically pump curves and run times are used to quantify this; the verification of water data is performed by a third-party and is based on the data reported by the sites using this quantification method.

Please explain
<Not Applicable>

Water withdrawals – volume by source
% verified
76-100

Verification standard used
Typically pump curves and run times are used to quantify this; the verification of water data is performed by a third-party and is based on the data reported by the sites using this quantification method.

Please explain
<Not Applicable>

Water withdrawals – quality by standard water quality parameters
% verified
76-100

Verification standard used
Typically pump curves and run times are used to quantify this; the verification of water data is performed by a third-party and is based on the data reported by the sites using this quantification method.

Please explain
<Not Applicable>

Water discharges – total volumes
% verified
76-100

Verification standard used
Standards and methodologies as contained in Federal and State NPDES Permits; the verification of water data is performed by a third-party and is based on the data reported by the sites using this quantification method.

Please explain
<Not Applicable>
Water discharges – volume by destination

% verified
76-100

Verification standard used
Standards and methodologies as contained in Federal and State NPDES Permits; the verification of water data is performed by a third-party and is based on the data reported by the sites using this quantification method.

Please explain
<Not Applicable>

Water discharges – volume by final treatment level

% verified
76-100

Verification standard used
Standards and methodologies as contained in Federal and State NPDES Permits.

Please explain
<Not Applicable>

Water discharges – quality by standard water quality parameters

% verified
76-100

Verification standard used
Standards and methodologies as contained in Federal and State NPDES Permits.

Please explain
<Not Applicable>

Water consumption – total volume

% verified
76-100

Verification standard used
Standards and methodologies as contained in Federal and State NPDES Permits.

Please explain
<Not Applicable>

W6. Governance

W6.1

(W6.1) Does your organization have a water policy?
Yes, we have a documented water policy that is publicly available

W6.1a
(W6.1a) Select the options that best describe the scope and content of your water policy.

<table>
<thead>
<tr>
<th>Scope</th>
<th>Content</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Company-wide</td>
<td>Description of the scope (including value chain stages) covered by the policy Description of business dependency on water Description of business impact on water Commitment to align with international frameworks, standards, and widely-recognized water initiatives Commitment to prevent, minimize, and control pollution Commitment to safely managed Water, Sanitation and Hygiene (WASH) in the workplace Commitment to safely managed Water, Sanitation and Hygiene (WASH) in local communities Commitment to stakeholder education and capacity building on water security Commitment to water stewardship and/or collective action Acknowledgement of the human right to water and sanitation Recognition of environmental linkages, for example, due to climate change</td>
<td>Entergy’s Environmental Health and Safety Management Policy (EHSMS), Environmental Management System Procedure (EMS), and Water Management Standard apply to all operations of the company. The purpose of these documents is to provide clear direction to all employees regarding the processes and expectations for ensuring water management excellence. Both plans are company-wide and publicly available so that employees and stakeholders can be aware of Entergy’s commitment to water protection. Another publicly available water policy document is Entergy’s Water Management Overview which expands upon the objectives outlined in the EMS and Water Management Standard by providing specific water-related goals and targets that Entergy is working towards achieving. For example, Entergy recognizes the environmental linkage between water and climate change. Entergy has participated in the Department of Energy’s Partnership for Energy Sector Climate Resilience. As described by the department, this initiative intends to enhance U.S. energy security by improving the resilience of energy infrastructure to extreme weather and climate change impacts. The goal is to accelerate investment in technologies, practices, and policies that will enable a resilient 21st-century energy system and facilitate risk-based decision-making and cost-effective strategies for a more climate-resilient U.S. energy infrastructure. Further details are provided in the Water Management Overview.</td>
</tr>
</tbody>
</table>

https://www.entergy.com/userfiles/environment/docs/water.pdf

Across our operations, Entergy protects water resources by maintaining a compliance rate with state and federal water pollution control permit requirements of at least 99.9 percent from year to year; however, the Water Management Overview stresses not only the importance of regulatory compliance when it comes to water stewardship, but also increases awareness of water-related issues and incidents at Entergy and spotlights Entergy’s progress towards water-related innovations and engineering. The policies, procedures, and standards outlined in these three documents also ensure consistency across the Entergy system. Entergy’s environmental vision and EHSMS policy are publicly available on the company’s website.

http://www.entergy.com/environment/

(W6.2) Is there board level oversight of water-related issues within your organization?

Yes

(W6.2a)
(W6.2a) Identify the position(s) (do not include any names) of the individual(s) on the board with responsibility for water-related issues.

<table>
<thead>
<tr>
<th>Position of individual or committee</th>
<th>Responsibilities for water-related issues</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chief Executive Officer (CEO)</td>
<td>Entergy's CEO has the overarching responsibility for managing risk including water management risk, executing strategy that positions the company to prosper in a carbon constrained economy and ensuring actions are taken to meet Entergy's environmental strategy. Additionally, The CEO chairs the Board of Directors and oversees Entergy’s entire corporate structure, governance, and management</td>
</tr>
<tr>
<td>Other, please specify (Board Level Committee)</td>
<td>Entergy's Audit Committee of the Board of Directors has the responsibility for oversight and implementation of Entergy's position, performance and advocacy associated with any material water issues.</td>
</tr>
<tr>
<td>Other, please specify (Executive Vice President & General Counsel)</td>
<td>Entergy's Executive Vice President and General Counsel has the responsibility for oversight and implementation of Entergy's position, performance and advocacy associated with any material water issues. Additionally, the Executive Vice President and General Counsel has the responsibility of approving Entergy EMS Procedures and revisions as well as interpreting Entergy EMS Procedures, as needed.</td>
</tr>
<tr>
<td>Other, please specify (Executive Vice President and Chief Operating Officer)</td>
<td>Entergy’s Executive Vice President and Chief Operating Officer has the responsibility for oversight and implementation of Entergy's transition to a generation mix with a lower carbon footprint, which also results in a lower water footprint.</td>
</tr>
<tr>
<td>Other, please specify (Vice President, Sustainability & Environmental Policy)</td>
<td>Entergy’s Vice President, Sustainability and Environmental Policy, has strategic and implementation responsibility for ensuring integration of water risk considerations in the business and compliance with water regulations.</td>
</tr>
<tr>
<td>Other, please specify (Board Chair)</td>
<td>Entergy’s Chairman is also the CEO and has the overarching responsibility for managing risk including water management risk, executing strategy that positions the company to prosper in a carbon constrained economy and ensuring actions are taken to meet Entergy’s environmental strategy.</td>
</tr>
<tr>
<td>Director on board</td>
<td>The Board of Directors in 2002 adopted Entergy’s Environmental Vision Statement which details the company’s commitment to operate its business in ways that preserve and protect our environment.</td>
</tr>
<tr>
<td>Other, please specify (Director, Corporate Risk)</td>
<td>Water permitting requirements, stormwater impacts, surface water impacts, wetlands impacts, and other water-related risks are identified on a corporate level and for significant capital projects and transactions. The Director, Corporate Risk’s capital expenditure risk review process includes assessing water-related and other environmental risks. Water issues are included in a scenario analysis that Entergy conducts as part of its overall due diligence review and analysis of any expansion, acquisition, new project, or investment. Depending on the project, scenario analysis may include water availability issues, quality issues, intake concerns, wetlands issues, and water-related biodiversity impacts. Desktop evaluations are conducted using ArcGIS to determine the water impacts of transmission construction projects in preliminary planning phases.</td>
</tr>
</tbody>
</table>

(W6.2b) Provide further details on the board’s oversight of water-related issues.

<table>
<thead>
<tr>
<th>Frequency that water-related issues are a scheduled agenda item</th>
<th>Governance mechanisms into which water-related issues are integrated</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scheduled - some meetings</td>
<td>Monitoring implementation and performance</td>
<td>Senior Management reviews water issues quarterly at Environmental Leadership Team meetings. Briefings on water issues are conducted on a quarterly basis. Material water issues are typically reported quarterly and contained in Entergy’s Annual Reports on Form 10-K. However, issues that are more immediate or of a material nature may be reported more frequently.</td>
</tr>
<tr>
<td></td>
<td>Overseeing acquisitions, mergers, and divestitures</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Overseeing major capital expenditures</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reviewing and guiding annual budgets</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reviewing and guiding business plans</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reviewing and guiding corporate responsibility strategy</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reviewing and guiding major plans of action</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reviewing and guiding risk management policies</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reviewing and guiding strategy</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reviewing innovation/R&D priorities</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Setting performance objectives</td>
<td></td>
</tr>
</tbody>
</table>

(W6.2d) Does your organization have at least one board member with competence on water-related issues?

<table>
<thead>
<tr>
<th>Board member(s) have competence on water-related issues</th>
<th>Criteria used to assess competence of board member(s) on water-related issues</th>
<th>Primary reason for no board-level competence on water-related issues</th>
<th>Explain why your organization does not have at least one board member with competence on water-related issues and any plans to address board-level competence in the future</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>8 of our board members have skills and attributes within environmental, climate, sustainability or ESG strategies that include competence on water impact, risk and opportunity.</td>
<td><Not Applicable></td>
<td><Not Applicable></td>
</tr>
</tbody>
</table>
(W6.3) Provide the highest management-level position(s) or committee(s) with responsibility for water-related issues (do not include the names of individuals).

<table>
<thead>
<tr>
<th>Name of the position(s) and/or committee(s)</th>
<th>Water-related responsibilities of this position</th>
<th>Frequency of reporting to the board on water-related issues</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chief Executive Officer (CEO)</td>
<td>Managing water-related risks and opportunities</td>
<td>Quarterly</td>
<td>Entergy’s CEO has the overarching responsibility for managing risk including water management risk, executing strategy that positions the company to prosper in a carbon constrained economy and ensuring actions are taken to meet Entergy’s environmental strategy. Additionally, the CEO chairs the Board of Directors and oversees Entergy’s entire corporate structure, governance, and management.</td>
</tr>
<tr>
<td>Other, please specify (Corporate Governance Committee of the Board of Directors)</td>
<td>Managing water-related risks and opportunities</td>
<td>Quarterly</td>
<td>Entergy’s Corporate Governance Committee of the Board of Directors is charged with reviewing and making recommendations to the full Board, as needed, with respect to the Entergy’s sustainability strategies, policies, and practices, inclusive of material water-related issues.</td>
</tr>
<tr>
<td>Other, please specify (Executive Vice President & General Counsel)</td>
<td>Managing water-related risks and opportunities</td>
<td>Quarterly</td>
<td>Entergy’s Executive Vice President & General Counsel has the responsibility for oversight and implementation of Entergy’s position, performance and advocacy associated with any material water issues. Additionally, the Executive Vice President & General Counsel has the responsibility of approving Entergy EMS Procedures and revisions as well as interpreting Entergy EMS Procedures, as needed.</td>
</tr>
<tr>
<td>Other, please specify (Executive Vice President and Chief Operating Officer)</td>
<td>Managing water-related risks and opportunities</td>
<td>Quarterly</td>
<td>Entergy’s EVP and Chief Operating Officer has the responsibility for oversight and implementation of Entergy’s transition to a generation mix with a lower carbon footprint, which also results in a lower water footprint.</td>
</tr>
<tr>
<td>Other, please specify (Vice President, Sustainability & Environmental Policy)</td>
<td>Managing water-related risks and opportunities</td>
<td>As important matters arise</td>
<td>Entergy’s Vice President of Sustainability & Environmental Policy has the responsibility for performance disclosure and monitoring of relevant federal regulatory activity.</td>
</tr>
<tr>
<td>Other, please specify (Board Chair)</td>
<td>Managing water-related risks and opportunities</td>
<td>Quarterly</td>
<td>Entergy’s Chairman has the overarching responsibility for managing risk including water management risk, executing strategy that positions the company to prosper in a carbon constrained economy and ensuring actions are taken to meet Entergy’s environmental strategy.</td>
</tr>
</tbody>
</table>
Name of the position(s) and/or committee(s)
Other, please specify (Director, Corporate Risk)

Water-related responsibilities of this position
Managing water-related risks and opportunities

Frequency of reporting to the board on water-related issues
As important matters arise

Please explain
Water permitting requirements, stormwater impacts, surface water impacts, wetlands impacts, and other water-related risks are identified on a corporate level and for significant capital projects and transactions. The Director, Corporate Risk’s capital expenditure risk review process includes an assessment of water-related and other environmental risks. Water issues are included in a scenario analysis Entergy conducts as part of its overall due diligence review and analysis of any expansion, acquisition, new project, or investment. Depending on the project, scenario analysis may include water availability issues, quality issues, intake concerns, wetlands issues, and water-related biodiversity impacts. Desktop evaluations are conducted using ArcGIS to determine the water impacts of transmission construction projects in preliminary planning phases.

W6.4

(W6.4) Do you provide incentives to C-suite employees or board members for the management of water-related issues?

<table>
<thead>
<tr>
<th>Provide incentives for management of water-related issues</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>Climate and environmental risk management protect Entergy’s physical assets, financial performance, and total shareholder return. Entergy’s compensation programs for executive officers are based on a philosophy of pay-for-performance, embodied in the design of our annual and long-term incentive plans. Our annual and long-term incentive compensation awards reward the achievement of shareholder value using metrics deemed by the Board to be consistent with the overall goals and strategic direction that the Board has set for the company. Achievement of the Company’s sustainability objectives influences long-term shareholder value and, correspondingly, the equity awarded each year under the long-term incentive programs. Within the applicable business units, individual awards under our annual incentive plan are directly tied to various sustainability business objectives, including performance under the company’s climate commitment and goals.</td>
</tr>
</tbody>
</table>

W6.4a
(W6.4a) What incentives are provided to C-suite employees or board members for the management of water-related issues (do not include the names of individuals)?

<table>
<thead>
<tr>
<th>Role(s) entitled to incentive</th>
<th>Performance indicator</th>
<th>Contribution of incentives to the achievement of your organization’s water commitments</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monetary reward</td>
<td>Corporate executive team</td>
<td>Other, please specify (Entergy is not currently incentivizing water-related issues using performance indicators. Entergy does provide incentives for effectively managing environmental risks, in which water-related issues are encompassed.)</td>
<td>Entergy does not currently have a water target. However, Entergy’s clean energy transition and 50% carbon-free energy capacity by 2030 goal will reduce our water impact and is tied into Entergy Achievement Multiplier (EAM). Variable incentive compensation for executives includes financial and non-financial measures. Beginning in 2021 and continuing into 2022 and 2023, environmental and social performance measures (i.e., safety, diversity & inclusion, environmental stewardship and customer net promoter score) determine 40% of the Entergy Achievement Multiplier (EAM), which is the performance metric used to determine the maximum funding available for annual incentive awards. In 2022, the EAM included an assessment of progress toward environmental commitments through performance on key initiatives, including measurement of initiatives to drive emissions rate reduction goals, company and customer electrification and climate resilience (transmission and distribution systems, water, reforestation and wetland restoration). These company actions and customer offerings are important actions for creating sustainable shareholder value and are a key business strategy. Environmental and social performance is integrated into our compensation system as a critical component of total shareholder return and overall corporate governance and risk management. Entergy has committed to voluntarily reduce our CO2 emission rate to half of what it was in 2000 by 2030 and achieve net-zero emissions by 2050.</td>
</tr>
<tr>
<td>Non-monetary reward</td>
<td>Other, please specify (All Employees)</td>
<td>Reduction of water withdrawals – direct operations</td>
<td>Entergy recognizes employees for participation in water-related activities, including water advocacy, communicating water-related issues, and involvement in water-related volunteerism.</td>
</tr>
</tbody>
</table>

W6.5

(W6.5) Do you engage in activities that could either directly or indirectly influence public policy on water through any of the following?

- Yes, direct engagement with policy makers
- Yes, trade associations
- Yes, funding research organizations

W6.5a

(W6.5a) What processes do you have in place to ensure that all of your direct and indirect activities seeking to influence policy are consistent with your water policy/water commitments?

Corporate environmental requirements and guidelines govern Entergy’s business functions. Adopted by the Board of Directors in 2002, Entergy’s Environmental Vision Statement details the company’s commitment to operating its business in ways that preserve and protect our environment. Along with the company’s aspirations, the statement guides business policies and decisions. Entergy also has established a Environmental, Occupational Health & Safety Management System (EHSMS) Policy that defines its overall governance structure, roles and responsibilities, and management system requirements. Should an entity engaged or supported by Entergy hold a position on water that is not consistent with our water policies, an internal discussion takes place to determine what action to take, after which Entergy’s stance on the matter is communicated to the entity.

W6.6

(W6.6) Did your organization include information about its response to water-related risks in its most recent mainstream financial report?

- Yes (you may attach the report - this is optional)
 - Entergy_2022_Integrated_Report.pdf
W7.1

(W7.1) Are water-related issues integrated into any aspects of your long-term strategic business plan, and if so how?

<table>
<thead>
<tr>
<th>Are water-related issues integrated?</th>
<th>Long-term time horizon (years)</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes, water-related issues are integrated</td>
<td>5-10</td>
<td>Entergy’s Fleet Portfolio Transformation Strategy is currently in progress; the company has made significant progress and has added 8,855 MW of closed cycle cooling CCCT capacity since 2005. The company has also deactivated multiple once-through cooling units over this same time frame, resulting in a significant reduction in water withdrawals. From 2016-2022, total water withdrawals for thermal cooling from Entergy-owned generation decreased by over 1.5 billion gallons/year. Continuation of this business strategy is expected to result in further significant decreases in the volume of water withdrawals through 2030 and beyond. Efforts are currently underway to develop a quantitative goal for this value.</td>
</tr>
<tr>
<td>Yes, water-related issues are integrated</td>
<td>5-10</td>
<td>Entergy’s business functions have developed a management system that describes and defines its long-term strategy, compliance requirements, risk assessment procedures, objective-setting process, programs/procedures, self-assessment mechanisms and senior management review requirements. Impacts on both water quality and quantity are evaluated as a part of this process. Senior Management reviews water issues quarterly at Environmental Leadership Team meetings, managing and monitoring the path towards achieving long term objectives.</td>
</tr>
<tr>
<td>Yes, water-related issues are integrated</td>
<td>5-10</td>
<td>Entergy’s ERM process and investment approval process (IAP) are companywide processes used to identify material issues and strategic imperatives to analyse and prioritize environmental, weather and climate risks and opportunities for all businesses. The scope of the analysis includes evaluation of climate change proposals, adaptation issues, customer impacts, physical risks, economic impacts, and litigation issues. Entergy’s IAP requires projects of sufficient materiality to include scenarios reflecting the cost and/or benefits regarding avoiding damage from extreme weather and other water related issues.</td>
</tr>
</tbody>
</table>

W7.2

(W7.2) What is the trend in your organization’s water-related capital expenditure (CAPEX) and operating expenditure (OPEX) for the reporting year, and the anticipated trend for the next reporting year?

Row 1

<table>
<thead>
<tr>
<th>Water-related CAPEX (+/- % change)</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anticipated forward trend for CAPEX (+/- % change)</td>
<td>0</td>
</tr>
<tr>
<td>Water-related OPEX (+/- % change)</td>
<td>0</td>
</tr>
<tr>
<td>Anticipated forward trend for OPEX (+/- % change)</td>
<td>0</td>
</tr>
</tbody>
</table>

Please explain

The water-related CAPEX, anticipated forward trend for CAPEX, water-related OPEX, and anticipated forward trend for OPEX are estimated to be no changes between 2022 and 2023. For CAPEX expenditures, Entergy continues to upgrade fixed assets, water management facilities, and water security in the same manner from year to year to maintain the functionality of existing stormwater systems, pollution control devices, and new machinery. Although fixed assets are generally replaced with more efficient, lower use water designs, there is not a calculable $ amount that can be estimated from year to year. Similarly, overall OPEX expenditures are expected to remain relatively consistent from 2022 to 2023, and water-related OPEX is expected to track with overall OPEX trends. Operational expenses for permit renewals, wetland protection, water supply costs, water quality testing, well maintenance, and environmental consulting services have not changed significantly from 2022 to 2023.

W7.3

(W7.3) Does your organization use scenario analysis to inform its business strategy?

<table>
<thead>
<tr>
<th>Use of scenario analysis</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>Physical risks from today’s climate and future climate change include increases in sea level (from both sea level rise and subsidence), wind and storm surge damages, wetland and barrier island erosion, risks of flooding and changes in weather conditions, such as changes in precipitation, average temperatures, and potential increased impacts of extreme weather conditions or storms. To respond to this, Entergy made improvements to our transmission system totaling about $300 million. Today, we are investing approximately $1 billion annually to improve our transmission infrastructure and reliability. Entergy evaluates hardening strategies from a customer perspective, weighing the benefits of fewer and shorter outages against the high costs of hardening the system which our customers ultimately must pay for. As Entergy designs and builds new generation, the site selection process involves reviewing the sites flood potential with a review against 100-year floodplain data for each site.</td>
</tr>
</tbody>
</table>

W7.3a
(W7.3a) Provide details of the scenario analysis, what water-related outcomes were identified, and how they have influenced your organization’s business strategy.

<table>
<thead>
<tr>
<th>Type of scenario analysis used</th>
<th>Parameters, assumptions, analytical choices</th>
<th>Description of possible water-related outcomes</th>
<th>Influence on business strategy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water-related Other, please specify (IEA Sustainable Development Scenario)</td>
<td>Increased deployment of renewables. Lifetime extensions of nuclear power plants and some new builds, where applicable and with public acceptance. Expanded support for the deployment of CCUS. Efficiency and emissions standards that prevent the refurbishment of less efficient fossil fuel plants. Stringent pollution emissions limits for facilities above 50 MWh input using solid fuels set at 200 mg/m³ for SO₂ and NOX, and 30 mg/m³ for PM₂.₅.</td>
<td>Reduced water availability and changes to precipitation patterns due to climate change.</td>
<td>Shifting temperatures and weather patterns causing reduced water availability or disasters restricting the ability to obtain quality water. Increased regulatory scrutiny increasing water usage costs.</td>
</tr>
</tbody>
</table>

W7.4

(W7.4) Does your company use an internal price on water?

Row 1

Does your company use an internal price on water?

No, and we do not anticipate doing so within the next two years

Please explain

There is no plan in place yet to be pursued by Entergy.

W7.5

(W7.5) Do you classify any of your current products and/or services as low water impact?

<table>
<thead>
<tr>
<th>Products and/or services classified as low water impact</th>
<th>Definition used to classify low water impact</th>
<th>Primary reason for not classifying any of your current products and/or services as low water impact</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>Power generation facilities that do not use continuous water intake to generate power.</td>
<td><Not Applicable></td>
<td>Solar power stations use no water to generate power and currently make up 1% of our capacity.</td>
</tr>
</tbody>
</table>

W8. Targets

W8.1

(W8.1) Do you have any water-related targets?

No, and we do not plan to within the next two years

W8.1c

(W8.1c) Why do you not have water-related target(s) and what are your plans to develop these in the future?

<table>
<thead>
<tr>
<th>Primary reason</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Important but not an immediate business priority</td>
<td>Entergy’s water footprint largely comes from our power generation, which Entergy has been transforming to be both less emissions and water intensive. While Entergy has evaluated potential water targets, setting a target is not currently a priority. In 2022, we announced a new milestone towards our net zero goal to achieve 50% clean energy capacity by 2030; Entergy’s pathway towards achieving this goal includes rapid investments in renewables, which will decrease our water impact.</td>
</tr>
</tbody>
</table>

W9. Verification

W9.1

(W9.1) Do you verify any other water information reported in your CDP disclosure (not already covered by W5.1a)?

In progress

W10. Plastics
W10.1

(W10.1) Have you mapped where in your value chain plastics are used and/or produced?

<table>
<thead>
<tr>
<th>Plastics mapping</th>
<th>Value chain stage</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row 1</td>
<td>Not mapped – and we do not plan to within the next two years</td>
<td><Not Applicable></td>
</tr>
</tbody>
</table>

W10.2

(W10.2) Across your value chain, have you assessed the potential environmental and human health impacts of your use and/or production of plastics?

<table>
<thead>
<tr>
<th>Impact assessment</th>
<th>Value chain stage</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row 1</td>
<td>Not assessed – and we do not plan to within the next two years</td>
<td><Not Applicable></td>
</tr>
</tbody>
</table>

W10.3

(W10.3) Across your value chain, are you exposed to plastics-related risks with the potential to have a substantive financial or strategic impact on your business? If so, provide details.

<table>
<thead>
<tr>
<th>Risk exposure</th>
<th>Value chain stage</th>
<th>Type of risk</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row 1</td>
<td>Not assessed – and we do not plan to within the next two years</td>
<td><Not Applicable></td>
<td>Plastic are not a key material leveraged in power production, transmission or distribution.</td>
</tr>
</tbody>
</table>

W10.4

(W10.4) Do you have plastics-related targets, and if so what type?

<table>
<thead>
<tr>
<th>Targets in place</th>
<th>Target type</th>
<th>Target metric</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row 1</td>
<td>No – and we do not plan to within the next two years</td>
<td><Not Applicable></td>
<td>As a utility provider, packaging, plastic waste or production or plastic sourcing is not a material issue. Thereby, we do not plan to set a plastics target within the next two years.</td>
</tr>
</tbody>
</table>

W10.5

(W10.5) Indicate whether your organization engages in the following activities.

<table>
<thead>
<tr>
<th>Activity applies</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Production of plastic polymers</td>
<td>No</td>
</tr>
<tr>
<td>Production of durable plastic components</td>
<td>No</td>
</tr>
<tr>
<td>Production / commercialization of durable plastic goods (including mixed materials)</td>
<td>No</td>
</tr>
<tr>
<td>Production / commercialization of plastic packaging</td>
<td>No</td>
</tr>
<tr>
<td>Production of goods packaged in plastics</td>
<td>No</td>
</tr>
<tr>
<td>Provision / commercialization of services or goods that use plastic packaging (e.g., retail and food services)</td>
<td>No</td>
</tr>
</tbody>
</table>

W11. Sign off

W-FI

(W-FI) Use this field to provide any additional information or context that you feel is relevant to your organization’s response. Please note that this field is optional and is not scored.

W11.1

(W11.1) Provide details for the person that has signed off (approved) your CDP water response.

<table>
<thead>
<tr>
<th>Job title</th>
<th>Corresponding job category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row 1</td>
<td>Executive Vice President and General Counsel</td>
</tr>
</tbody>
</table>
Submit your response

In which language are you submitting your response?
English

Please confirm how your response should be handled by CDP

<table>
<thead>
<tr>
<th>Please select your submission options</th>
<th>I understand that my response will be shared with all requesting stakeholders</th>
<th>Response permission</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>Yes</td>
<td>Public</td>
</tr>
</tbody>
</table>

Please indicate your consent for CDP to share contact details with the Pacific Institute to support content for its Water Action Hub website.
Yes, CDP may share our Main User contact details with the Pacific Institute

Please confirm below
I have read and accept the applicable Terms